Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Resat Unal is active.

Publication


Featured researches published by Resat Unal.


American Journal of Physiology-endocrinology and Metabolism | 2010

Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation

Michael Spencer; Aiwei Yao-Borengasser; Resat Unal; Neda Rasouli; Catherine M. Gurley; Beibei Zhu; Charlotte A. Peterson; Philip A. Kern

Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.


The Journal of Clinical Endocrinology and Metabolism | 2011

Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance.

Michael Spencer; Resat Unal; Beibei Zhu; Neda Rasouli; Robert E. McGehee; Charlotte A. Peterson; Philip A. Kern

CONTEXT Insulin resistance is associated with inflammation, fibrosis, and hypoxia in adipose tissue. OBJECTIVE This study was intended to better characterize the extracellular matrix (ECM) and vascularity of insulin-resistant adipose tissue. DESIGN Adipose expression of collagens, elastin, and angiogenic factors was assessed using real-time RT-PCR and immunohistochemistry (IHC) in abdominal sc adipose tissue. Adipocyte-macrophage coculture experiments examined the effects of polarized macrophages on adipose ECM gene expression, and the effects of collagens were measured in an angiogenesis assay. PARTICIPANTS AND SETTING A total of 74 nondiabetic subjects participated at a University Clinical Research Center. INTERVENTIONS Interventions included baseline adipose biopsy and measurement of insulin sensitivity. MAIN OUTCOME MEASURES Outcome measures included characterization of vascularity and ECM in adipose tissue. RESULTS CD31 (an endothelial marker) mRNA showed no significant correlation with body mass index or insulin sensitivity. In a subgroup of 17 subjects (nine obese, eight lean), CD31-positive capillary number in obese was decreased by 58%, whereas larger vessels were increased by 70%, accounting for the lack of change in CD31 expression with obesity. Using IHC, obese (compared with lean) subjects had decreased elastin and increased collagen V expression, and adipocytes cocultured with M2 macrophages had reduced elastin and increased collagen V expression. In obese subjects, collagen V was colocalized with large blood vessels, and the addition of collagen V to an angiogenesis assay inhibited endothelial budding. CONCLUSIONS The adipose tissue from obese/insulin-resistant subjects has fewer capillaries and more large vessels as compared with lean subjects. The ECM of adipose tissue may play an important role in regulating the expandability as well as angiogenesis of adipose tissue.


Journal of Lipid Research | 2006

The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin resistance, and TZD treatment

Gouri Ranganathan; Resat Unal; Irina D. Pokrovskaya; Aiwei Yao-Borengasser; Bounleut Phanavanh; Beata Lecka-Czernik; Neda Rasouli; Philip A. Kern

Acyl-coenzyme A:diacylglycerol transferase (DGAT), fatty acid synthetase (FAS), and LPL are three enzymes important in adipose tissue triglyceride accumulation. To study the relationship of DGAT1, FAS, and LPL with insulin, we examined adipose mRNA expression of these genes in subjects with a wide range of insulin sensitivity (SI). DGAT1 and FAS (but not LPL) expression were strongly correlated with SI. In addition, the expression of DGAT1 and FAS (but not LPL) were higher in normal glucose-tolerant subjects compared with subjects with impaired glucose tolerance (IGT) (P < 0.005). To study the effects of insulin sensitizers, subjects with IGT were treated with pioglitazone or metformin for 10 weeks, and lipogenic enzymes were measured in adipose tissue. After pioglitazone treatment, DGAT1 expression was increased by 33 ± 10% (P < 0.05) and FAS expression increased by 63 ± 8% (P < 0.05); however, LPL expression was not altered. DGAT1, FAS, and LPL mRNA expression were not significantly changed after metformin treatment. The treatment of mice with rosiglitazone also resulted in an increase in adipose expression of DGAT1 by 2- to 3-fold, as did the treatment of 3T3 F442A adipocytes in vitro with thiazolidinediones. These data support a more global concept suggesting that adipose lipid storage functions to prevent peripheral lipotoxicity.


Diabetes | 2013

Omega-3 Fatty Acids Reduce Adipose Tissue Macrophages in Human Subjects With Insulin Resistance

Michael Spencer; Brian S. Finlin; Resat Unal; Beibei Zhu; Andrew J. Morris; Lindsey Rae Shipp; Jonah Lee; R. Grace Walton; Akosua Adu; Rod Erfani; Marilyn S. Campbell; Robert E. McGehee; Charlotte A. Peterson; Philip A. Kern

Fish oils (FOs) have anti-inflammatory effects and lower serum triglycerides. This study examined adipose and muscle inflammatory markers after treatment of humans with FOs and measured the effects of ω-3 fatty acids on adipocytes and macrophages in vitro. Insulin-resistant, nondiabetic subjects were treated with Omega-3-Acid Ethyl Esters (4 g/day) or placebo for 12 weeks. Plasma macrophage chemoattractant protein 1 (MCP-1) levels were reduced by FO, but the levels of other cytokines were unchanged. The adipose (but not muscle) of FO-treated subjects demonstrated a decrease in macrophages, a decrease in MCP-1, and an increase in capillaries, and subjects with the most macrophages demonstrated the greatest response to treatment. Adipose and muscle ω-3 fatty acid content increased after treatment; however, there was no change in insulin sensitivity or adiponectin. In vitro, M1-polarized macrophages expressed high levels of MCP-1. The addition of ω-3 fatty acids reduced MCP-1 expression with no effect on TNF-α. In addition, ω-3 fatty acids suppressed the upregulation of adipocyte MCP-1 that occurred when adipocytes were cocultured with macrophages. Thus, FO reduced adipose macrophages, increased capillaries, and reduced MCP-1 expression in insulin-resistant humans and in macrophages and adipocytes in vitro; however, there was no measureable effect on insulin sensitivity.


Journal of Biological Chemistry | 2008

Serotonin Transamidates Rab4 and Facilitates Its Binding to the C Terminus of Serotonin Transporter

Billow A. Ahmed; Brandon C. Jeffus; Syed I. A. Bukhari; Justin T. Harney; Resat Unal; Vladimir V. Lupashin; Peter van der Sluijs; Fusun Kilic

The serotonin transporter (SERT) on the plasma membrane is the major mechanism for the clearance of plasma serotonin (5-hydroxytryptamine (5HT)). The uptake rates of cells depend on the density of SERT molecules on the plasma membrane. Interestingly, the number of SERT molecules on the platelet surface is down-regulated when plasma 5HT ([5HT]ex) is elevated. It is well reported that stimulation of cells with high [5HT]ex induces transamidation of a small GTPase, Rab4. Modification with 5HT stabilizes Rab4 in its active, GTP-bound form, Rab4-GTP. Although investigating the mechanism by which elevated plasma 5HT level down-regulates the density of SERT molecules on the plasma membrane, we studied Rab4 and SERT in heterologous and platelet expression systems. Our data demonstrate that, in response to elevated [5HT]ex, Rab4-GTP co-localizes with and binds to SERT. The association of SERT with Rab4-GTP depends on: (i) 5HT modification and (ii) the GTP-binding ability of Rab4. Their association retains transporter molecules intracellularly. Furthermore, we mapped the Rab4-SERT association domain to amino acids 616-624 in the cytoplasmic tail of SERT. This finding provides an explanation for the role of the C terminus in the localization and trafficking of SERT via Rab4 in a plasma 5HT-dependent manner. Therefore, we propose that elevated [5HT]ex“paralyzes” the translocation of SERT from intracellular locations to the plasma membrane by controlling transamidation and Rab4-GTP formation.


Journal of Biological Chemistry | 2015

Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity.

R. Grace Walton; Beibei Zhu; Resat Unal; Michael Spencer; Manjula Sunkara; Andrew J. Morris; Richard Charnigo; Wendy S. Katz; Alan Daugherty; Deborah A. Howatt; Philip A. Kern; Brian S. Finlin

Background: Lipoprotein lipase regulates fat uptake into adipose tissue. Results: A mouse model with increased adipose tissue lipoprotein lipase has improved glucose metabolism when challenged with a high fat diet. Conclusion: Increasing adipose tissue lipoprotein lipase improves adipose tissue function. Significance: Adipose tissue lipoprotein lipase protects against obesity-induced glucose and insulin intolerance. Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.


Physiological Genomics | 2016

Integrative mRNA-microRNA analyses reveal novel interactions related to insulin sensitivity in human adipose tissue

Tyler J. Kirby; R. Grace Walton; Brian S. Finlin; Beibei Zhu; Resat Unal; Neda Rasouli; Charlotte A. Peterson; Philip A. Kern

Adipose tissue has profound effects on whole-body insulin sensitivity. However, the underlying biological processes are quite complex and likely multifactorial. For instance, the adipose transcriptome is posttranscriptionally modulated by microRNAs, but the relationship between microRNAs and insulin sensitivity in humans remains to be determined. To this end, we utilized an integrative mRNA-microRNA microarray approach to identify putative molecular interactions that regulate the transcriptome in subcutaneous adipose tissue of insulin-sensitive (IS) and insulin-resistant (IR) individuals. Using the NanoString nCounter Human v1 microRNA Expression Assay, we show that 17 microRNAs are differentially expressed in IR vs. IS. Of these, 16 microRNAs (94%) are downregulated in IR vs. IS, including miR-26b, miR-30b, and miR-145. Using Agilent Human Whole Genome arrays, we identified genes that were predicted targets of miR-26b, miR-30b, and miR-145 and were upregulated in IR subjects. This analysis produced ADAM22, MYO5A, LOX, and GM2A as predicted gene targets of these microRNAs. We then validated that miR-145 and miR-30b regulate these mRNAs in differentiated human adipose stem cells. We suggest that use of bioinformatic integration of mRNA and microRNA arrays yields verifiable mRNA-microRNA pairs that are associated with insulin resistance and can be validated in vitro.


Molecular Endocrinology | 2010

Matrix Metalloproteinase-9 Is Increased in Obese Subjects and Decreases in Response to Pioglitazone

Resat Unal; Aiwei Yao-Borengasser; Vijayalakshmi Varma; Neda Rasouli; Craig Labbate; Philip A. Kern; Gouri Ranganathan

Research Design: 86 nondiabetic, weight-stable subjects between 21 and 66 yr of age were recruited in a university hospital research center setting. All subjects underwent a sc adipose tissue incisional biopsy from the lower abdominal wall and insulin sensitivity testing using a frequently sampled iv glucose tolerance test. Impaired glucose-tolerant subjects were randomized to receive metformin or pioglitazone for 10 wk. To study the mechanism of MMP-9 regulation in adipocytes, cells were treated with pioglitazone or protein kinase C antisense oligomers, and MMP-9 levels were examined.


Atherosclerosis | 2012

The lipoprotein lipase (LPL) S447X gain of function variant involves increased mRNA translation

Gouri Ranganathan; Resat Unal; Irina D. Pokrovskaya; Preeti Tripathi; Jerome I. Rotter; Mark O. Goodarzi; Philip A. Kern


Archive | 2015

Integrative mRNA-microRNA analyses reveal novel interactions related to insulin

Tyler J. Kirby; R. Grace Walton; Brian S. Finlin; Beibei Zhu; Resat Unal; Neda; Charlotte A. Peterson; Philip A. Kern

Collaboration


Dive into the Resat Unal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beibei Zhu

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Charlotte A. Peterson

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Neda Rasouli

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiwei Yao-Borengasser

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gouri Ranganathan

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina D. Pokrovskaya

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge