Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reto A. Schwendener is active.

Publication


Featured researches published by Reto A. Schwendener.


Immunity | 2014

Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation

Slava Epelman; Kory J. Lavine; Anna E. Beaudin; Dorothy K. Sojka; Javier A. Carrero; Boris Calderon; Thaddeus Brija; Emmanuel L. Gautier; Stoyan Ivanov; Ansuman T. Satpathy; Joel D. Schilling; Reto A. Schwendener; Ismail Sergin; Babak Razani; E. Camilla Forsberg; Wayne M. Yokoyama; Emil R. Unanue; Marco Colonna; Gwendalyn J. Randolph; Douglas L. Mann

Cardiac macrophages are crucial for tissue repair after cardiac injury but are not well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6c(hi) monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins, and strategies to regulate compartment size.


Nature Medicine | 2008

Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

Edy Y. Kim; John T. Battaile; Anand C. Patel; Yingjian You; Eugene Agapov; Mitchell H. Grayson; Loralyn A. Benoit; Derek E. Byers; Yael G. Alevy; Jennifer Tucker; Suzanne Swanson; Rose M. Tidwell; Jeffrey W. Tyner; Mario Castro; Deepika Polineni; G. Alexander Patterson; Reto A. Schwendener; John Allard; Gary Peltz; Michael J. Holtzman

To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of chronic lung disease with pathology that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after an infection with a common type of respiratory virus is cleared to only trace levels of noninfectious virus. Chronic inflammatory disease is generally thought to depend on an altered adaptive immune response. However, here we find that this type of disease arises independently of an adaptive immune response and is driven instead by interleukin-13 produced by macrophages that have been stimulated by CD1d-dependent T cell receptor–invariant natural killer T (NKT) cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a previously undescribed NKT cell–macrophage innate immune axis.


British Journal of Cancer | 2006

Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach

S M Zeisberger; Bernhard Odermatt; Cornelia Marty; A H M Zehnder-Fjällman; Kurt Ballmer-Hofer; Reto A. Schwendener

Tumour-associated macrophages, TAMs, play a pivotal role in tumour growth and metastasis by promoting tumour angiogenesis. Treatment with clodronate encapsulated in liposomes (clodrolip) efficiently depleted these phagocytic cells in the murine F9 teratocarcinoma and human A673 rhabdomyosarcoma mouse tumour models resulting in significant inhibition of tumour growth ranging from 75 to >92%, depending on therapy and schedule. Tumour inhibition was accompanied by a drastic reduction in blood vessel density in the tumour tissue. Vascular endothelial growth factor (VEGF) is one of the major inducers of tumour angiogenesis and is also required for macrophage recruitment. The strongest effects were observed with the combination therapy of clodrolip and a VEGF-neutralising antibody, whereas free clodronate was not significantly active. Immunohistologic evaluation of the tumours showed significant depletion of F4/80+ and MOMA-1+ and a less pronounced depletion of CD11b+ TAMs. Blood vessel staining (CD31) and quantification of the vessels as well as TAMs and tumour-associated dendritic cells (TADCs) in the A673 model showed reduction rates of 85 to >94%, even 9 days after the end of therapy. In addition, CD11c+ TADCs, which have been shown to potentially differentiate into endothelial-like cells upon stimulation by tumour released growth and differentiation factors, were similarly reduced by clodrolip or antibody treatment. These results validate clodrolip therapy in combination with angiogenesis inhibitors as a promising novel strategy for an indirect cancer therapy aimed at the haematopoietic precursor cells that stimulate tumour growth and dissemination and as a tool to study the role of macrophages and dendritic cells in tumorigenesis.


Diabetes | 2011

Inflammation Is Necessary for Long-Term but Not Short-Term High-Fat Diet–Induced Insulin Resistance

Yun Sok Lee; Pingping Li; Jin Young Huh; In Jae Hwang; Min Lu; Jong In Kim; Mira Ham; Saswata Talukdar; Ai Chen; Wendell J. Lu; Guatam K. Bandyopadhyay; Reto A. Schwendener; Jerrold M. Olefsky; Jae Bum Kim

OBJECTIVE Tissue inflammation is a key factor underlying insulin resistance in established obesity. Several models of immuno-compromised mice are protected from obesity-induced insulin resistance. However, it is unanswered whether inflammation triggers systemic insulin resistance or vice versa in obesity. The purpose of this study was to assess these questions. RESEARCH DESIGN AND METHODS We fed a high-fat diet (HFD) to wild-type mice and three different immuno-compromised mouse models (lymphocyte-deficient Rag1 knockout, macrophage-depleted, and hematopoietic cell-specific Jun NH2-terminal kinase–deficient mice) and measured the time course of changes in macrophage content, inflammatory markers, and lipid accumulation in adipose tissue, liver, and skeletal muscle along with systemic insulin sensitivity. RESULTS In wild-type mice, body weight and adipose tissue mass, as well as insulin resistance, were clearly increased by 3 days of HFD. Concurrently, in the short-term HFD period inflammation was selectively elevated in adipose tissue. Interestingly, however, all three immuno-compromised mouse models were not protected from insulin resistance induced by the short-term HFD. On the other hand, lipid content was markedly increased in liver and skeletal muscle at day 3 of HFD. CONCLUSIONS These data suggest that the initial stage of HFD-induced insulin resistance is independent of inflammation, whereas the more chronic state of insulin resistance in established obesity is largely mediated by macrophage-induced proinflammatory actions. The early-onset insulin resistance during HFD feeding is more likely related to acute tissue lipid overload.


Blood | 2009

Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution

Raghu Prasad Kataru; Keehoon Jung; Cholsoon Jang; Hanseul Yang; Reto A. Schwendener; Jung Eun Baik; Seung Hyun Han; Kari Alitalo; Gou Young Koh

Using a bacterial pathogen-induced acute inflammation model in the skin, we defined the roles of local lymphatic vessels and draining lymph nodes (DLNs) in antigen clearance and inflammation resolution. At the peak day of inflammation, robust expansion of lymphatic vessels and profound infiltration of CD11b+/Gr-1+ macrophages into the inflamed skin and DLN were observed. Moreover, lymph flow and inflammatory cell migration from the inflamed skin to DLNs were enhanced. Concomitantly, the expression of lymphangiogenic growth factors such as vascular endothelial growth factor C (VEGF-C), VEGF-D, and VEGF-A were significantly up-regulated in the inflamed skin, DLNs, and particularly in enriched CD11b+ macrophages from the DLNs. Depletion of macrophages, or blockade of VEGF-C/D or VEGF-A, largely attenuated these phenomena, and produced notably delayed antigen clearance and inflammation resolution. Conversely, keratin 14 (K14)-VEGF-C transgenic mice, which have dense and enlarged lymphatic vessels in the skin dermis, exhibited accelerated migration of inflammatory cells from the inflamed skin to the DLNs and faster antigen clearance and inflammation resolution. Taken together, these results indicate that VEGF-C, -D, and -A derived from the CD11b+/Gr-1+ macrophages and local inflamed tissues play a critical role in promoting antigen clearance and inflammation resolution.


Therapeutic Advances in Vaccines | 2014

Liposomes as vaccine delivery systems: a review of the recent advances

Reto A. Schwendener

Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome–DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic cancer vaccines are also summarized.


Clinical and Experimental Immunology | 2005

Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells

Hans Christian Probst; K. Tschannen; Bernhard Odermatt; Reto A. Schwendener; Rolf M. Zinkernagel; M. F. Van Den Broek

To investigate the dependence of individual immunological processes on DC, a transgenic mouse system (CD11c‐DTR/GFP mice) has been developed that allows conditional depletion of CD11c+ DC in vivo through administration of diphtheria toxin. We have performed careful histological analysis of CD11c‐DTR/GFP mice at different time points after diphtheria toxin injection and confirmed the transient depletion of CD11c+ cells from lymph nodes and spleen. Unexpectedly, the injection of diphtheria toxin completely depleted marginal zone and metallophilic MΦ from the spleen and their sinusoidal counterparts from the lymph nodes. This finding limits the use of CD11c‐DTR/GFP mice for the analysis of the role of DC to models and read outs that are proven to be independent of marginal zone and sinusoidal MΦ.


Journal of Immunology | 2004

Nonmethylated CG Motifs Packaged into Virus-Like Particles Induce Protective Cytotoxic T Cell Responses in the Absence of Systemic Side Effects

Tazio Storni; Christiane Ruedl; Katrin Schwarz; Reto A. Schwendener; Wolfgang A. Renner; Martin F. Bachmann

DNA rich in nonmethylated CG motifs (CpGs) greatly facilitates induction of immune responses against coadministered Ags. CpGs are therefore among the most promising adjuvants known to date. Nevertheless, CpGs are characterized by two drawbacks. They have unfavorable pharmacokinetics and may exhibit systemic side effects, including splenomegaly. We show in this study that packaging CpGs into virus-like particles (VLPs) derived from the hepatitis B core Ag or the bacteriophage Qβ is a simple and attractive method to reduce these two problems. CpGs packaged into VLPs are resistant to DNase I digestion, enhancing their stability. In addition, and in contrast to free CpGs, packaging CpGs prevents splenomegaly in mice, without affecting their immunostimulatory capacity. In fact, vaccination with CpG-loaded VLPs was able to induce high frequencies of peptide-specific CD8+ T cells (4–14%), protected from infection with recombinant vaccinia viruses, and eradicated established solid fibrosarcoma tumors. Thus, packaging CpGs into VLPs improves both their immunogenicity and pharmacodynamics.


Nature Medicine | 2005

CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection

Jeffrey W. Tyner; Osamu Uchida; Naohiro Kajiwara; Edy Y. Kim; Anand C. Patel; Mary P. O'Sullivan; Michael J. Walter; Reto A. Schwendener; Donald N. Cook; Theodore M. Danoff; Michael J. Holtzman

Host defense against viruses probably depends on targeted death of infected host cells and then clearance of cellular corpses by macrophages. For this process to be effective, the macrophage must presumably avoid its own virus-induced death. Here we identify one such mechanism. We show that mice lacking the chemokine Ccl5 are immune compromised to the point of delayed viral clearance, excessive airway inflammation and respiratory death after mouse parainfluenza or human influenza virus infection. Virus-inducible levels of Ccl5 are required to prevent apoptosis of virus-infected mouse macrophages in vivo and mouse and human macrophages ex vivo. The protective effect of Ccl5 requires activation of the Ccr5 chemokine receptor and consequent bilateral activation of Gαi-PI3K-AKT and Gαi-MEK-ERK signaling pathways. The antiapoptotic action of chemokine signaling may therefore allow scavengers to finally stop the host cell-to-cell infectious process.


Circulation Research | 2007

Angiogenic Role of LYVE-1–Positive Macrophages in Adipose Tissue

Chung Hyun Cho; Young Jun Koh; Jinah Han; Sung Hk; Hyuek Jong Lee; Tohru Morisada; Reto A. Schwendener; Rolf A. Brekken; Guson Kang; Yuichi Oike; Tae Saeng Choi; Toshio Suda; Ook Joon Yoo; Gou Young Koh

Here we report the discovery of a characteristic dense vascular network (DVN) in the tip portion of epididymal adipose tissue in adult mice. The DVN is formed by angiogenesis rather than by vasculogenesis, and has functional blood circulation. This DVN and its subsequent branching may provide a new functional route for adipogenesis. The recruitment, infiltration, and accumulation of bone marrow-derived LYVE-1+ macrophages in the tip region are crucial for the formation of the DVN. Matrix metalloproteinases (MMPs) and the VEGF-VEGFR2 system are responsible not only for the formation of the DVN, but also for the recruitment and infiltration of LYVE-1+ macrophages into the epididymal adipose tissue tip region. SDF-1, but not the MCP-1-CCR2 system, is a critical factor in recruitment and ongoing retention of macrophages in this area. We also demonstrate that the tip region of epididymal adipose tissue is highly hypoxic, and thus provides a microenvironment conducive to the high expression and enhanced activities of VEGF, VEGFR2, MMPs, and SDF-1 in autocrine and paracrine manners, to create an ideal niche for the recruitment, retention, and angiogenic action of macrophages. These findings shed light on the complex interplay between macrophage infiltration, angiogenesis, and adipogenesis in the tip region of adult epididymal adipose tissue, and provide novel insight into the regulation of alternative outgrowth of adipose tissue.

Collaboration


Dive into the Reto A. Schwendener's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge