Reto Pieren
Swiss Federal Laboratories for Materials Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reto Pieren.
International Journal of Epidemiology | 2017
Ikenna C. Eze; Maria Foraster; Emmanuel Schaffner; Danielle Vienneau; Harris Héritier; Franziska Rudzik; Laurie Thiesse; Reto Pieren; Medea Imboden; Arnold von Eckardstein; Christian Schindler; Mark Brink; Christian Cajochen; Jean-Marc Wunderli; Martin Röösli; Nicole Probst-Hensch
Abstract Background Epidemiological studies have inconsistently linked transportation noise and air pollution (AP) with diabetes risk. Most studies have considered single noise sources and/or AP, but none has investigated their mutually independent contributions to diabetes risk. Methods We investigated 2631 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), without diabetes in 2002 and without change of residence between 2002 and 2011. Using questionnaire and biomarker data, incident diabetes cases were identified in 2011. Noise and AP exposures in 2001 were assigned to participants’ residences (annual average road, railway or aircraft noise level during day-evening-night (Lden), total night number of noise events, intermittency ratio (temporal variation as proportion of event-based noise level over total noise level) and nitrogen dioxide (NO2) levels. We applied mixed Poisson regression to estimate the relative risk (RR) of diabetes and their 95% confidence intervals (CI) in mutually-adjusted models. Results Diabetes incidence was 4.2%. Median [interquartile range (IQR)] road, railway, aircraft noise and NO2 were 54 (10) dB, 32 (11) dB, 30 (12) dB and 21 (15) μg/m3, respectively. Lden road and aircraft were associated with incident diabetes (respective RR: 1.35; 95% CI: 1.02–1.78 and 1.86; 95% CI: 0.96–3.59 per IQR) independently of Lden railway and NO2 (which were not associated with diabetes risk) in mutually adjusted models. We observed stronger effects of Lden road among participants reporting poor sleep quality or sleeping with open windows. Conclusions Transportation noise may be more relevant than AP in the development of diabetes, potentially acting through noise-induced sleep disturbances.
ISPRS international journal of geo-information | 2014
Madeleine Manyoky; Ulrike Wissen Hayek; Kurt Heutschi; Reto Pieren; Adrienne Grêt-Regamey
Public landscape impact assessment of renewable energy installations is crucial for their acceptance. Thus, a sound assessment basis is crucial in the implementation process. For valuing landscape perception, the visual sense is the dominant human sensory component. However, the visual sense provides only partial information about our environment. Especially when it comes to wind farm assessments, noise produced by the rotating turbine blades is another major impact factor. Therefore, an integrated visual and acoustic assessment of wind farm projects is needed to allow lay people to perceive their impact adequately. This paper presents an approach of linking spatially referenced auralizations to a GIS-based virtual 3D landscape model. We demonstrate how to utilize a game engine for 3D visualization of wind parks, using geodata as a modeling basis. In particular, the controlling and recording of specific parameters in the game engine is shown in order to establish a link to the acoustical model. The resulting prototype has high potential to complement conventional tools for an improved public impact assessment of wind farms.
Journal of Exposure Science and Environmental Epidemiology | 2016
Jean Marc Wunderli; Reto Pieren; Manuel Habermacher; Danielle Vienneau; Christian Cajochen; Nicole Probst-Hensch; Martin Röösli; Mark Brink
Most environmental epidemiology studies model health effects of noise by regressing on acoustic exposure metrics that are based on the concept of average energetic dose over longer time periods (i.e. the Leq and related measures). Regarding noise effects on health and wellbeing, average measures often cannot satisfactorily predict annoyance and somatic health effects of noise, particularly sleep disturbances. It has been hypothesized that effects of noise can be better explained when also considering the variation of the level over time and the frequency distribution of event-related acoustic measures, such as for example, the maximum sound pressure level. However, it is unclear how this is best parametrized in a metric that is not correlated with the Leq, but takes into account the frequency distribution of events and their emergence from background. In this paper, a calculation method is presented that produces a metric which reflects the intermittency of road, rail and aircraft noise exposure situations. The metric termed intermittency ratio (IR) expresses the proportion of the acoustical energy contribution in the total energetic dose that is created by individual noise events above a certain threshold. To calculate the metric, it is shown how to estimate the distribution of maximum pass-by levels from information on geometry (distance and angle), traffic flow (number and speed) and single-event pass-by levels per vehicle category. On the basis of noise maps that simultaneously visualize Leq, as well as IR, the differences of both metrics are discussed.
Textile Research Journal | 2012
Reto Pieren
A theoretical model for the oblique incidence sound absorption coefficient of thin woven fabrics backed by an air cavity is presented where the fabric is acoustically described by its specific airflow resistance and its surface mass density. The theoretical model is illustrated by an equivalent electrical circuit and validated in the case of normal sound incidence by experimental results obtained from impedance tube measurements on three fabric types. The influence of the surface mass density on the absorption coefficient is discussed and recommendations for practical applications are derived. Further, a simple formula to predict the specific airflow resistance of woven fabrics based on geometrical parameters is deduced. The normal incidence absorption coefficient and geometrical parameters of a set of 24 fabrics with a large range of interyarn porosities and specific airflow resistances were measured and used to validate the proposed geometry-based model to predict the absorption coefficient. Measured and estimated absorption coefficients show excellent agreement, with mean value and standard deviation of the differences of 0.03 ± 0.10. The model is therefore suitable for the design of new fabrics with an intended absorption coefficient.
Science of The Total Environment | 2011
Mark Brink; Sarah Omlin; Christian Müller; Reto Pieren; Mathias Basner
The sleep disturbing effects of nocturnal ambient non-traffic related noises such as bell strokes emitted from church bell towers on nearby residents are presently unknown. Nonetheless, this specific noise source is suspected to cause sleep disturbances in a small but qualified minority of people living in the vicinity of the bell towers that throughout the night indicate the time with bell ringings. A field study was carried out to elucidate whether acoustic properties of such bell strokes relate to awakening and to provide event-related exposure-effect functions between acoustical predictors and awakening probability. Awakening reactions were determined in 27 voluntary subjects, measured in their home setting for four consecutive nights with ambulatory polysomnography (PSG) and concurrent acoustic recordings in- and outside the dwelling. Results indicate that the bell ringing events increase awakenings in a similar fashion as has previously been reported with transportation noise events and that awakening probability first and foremost depends on maximum sound pressure level of an event. The number of bell strokes and the personal variables gender, age, and noise sensitivity did not influence awakening probability significantly. Awakening probability by tendency increased with elapsed time after sleep onset, and was decreased during slow wave sleep and REM sleep compared to S2 sleep. The results suggest that a reduction of the maximum sound pressure level or an interruption of ringings during nighttime might reduce awakenings. The determined exposure-effect relationships are compared with similar functions for impulsive noise and transportation noise, more specifically, aircraft noise. The paper concludes with a few considerations regarding nighttime noise regulation.
Journal of the Acoustical Society of America | 2016
Beat Schäffer; Sabine Schlittmeier; Reto Pieren; Kurt Heutschi; Mark Brink; Ralf Graf; Jürgen Hellbrück
Current literature suggests that wind turbine noise is more annoying than transportation noise. To date, however, it is not known which acoustic characteristics of wind turbines alone, i.e., without effect modifiers such as visibility, are associated with annoyance. The objective of this study was therefore to investigate and compare the short-term noise annoyance reactions to wind turbines and road traffic in controlled laboratory listening tests. A set of acoustic scenarios was created which, combined with the factorial design of the listening tests, allowed separating the individual associations of three acoustic characteristics with annoyance, namely, source type (wind turbine, road traffic), A-weighted sound pressure level, and amplitude modulation (without, periodic, random). Sixty participants rated their annoyance to the sounds. At the same A-weighted sound pressure level, wind turbine noise was found to be associated with higher annoyance than road traffic noise, particularly with amplitude modulation. The increased annoyance to amplitude modulation of wind turbines is not related to its periodicity, but seems to depend on the modulation frequency range. The study discloses a direct link of different acoustic characteristics to annoyance, yet the generalizability to long-term exposure in the field still needs to be verified.
Acta Acustica United With Acustica | 2011
Reto Pieren; Jean Marc Wunderli
In the context of the Swiss railway noise calculation model sonRAlL a model to predict sound exposure level spectra for reflections from cliffs was developed and validated with measurements. It is an engineering model with low computational cost that is applicable to any type of sound sources. The scattered energy reflected from the cliffs is modelled by the superposition of secondary sources placed on the cliff surface. The only free parameter of the model, the scattering coefficient, was determined by measurements with detonations of 200 g TNT e q in the alpine part of Switzerland. Measurements yielded good agreement not only in situations with reflecting cliffs but also in the presence of large boulder fields.
International Journal of Environmental Research and Public Health | 2017
Ikenna C. Eze; Medea Imboden; Maria Foraster; Emmanuel Schaffner; Ashish Kumar; Danielle Vienneau; Harris Héritier; Franziska Rudzik; Laurie Thiesse; Reto Pieren; Arnold von Eckardstein; Christian Schindler; Mark Brink; Jean-Marc Wunderli; Christian Cajochen; Martin Röösli; Nicole Probst-Hensch
Traffic noise has been linked to diabetes, with limited understanding of its mechanisms. We hypothesize that night-time road traffic noise (RTN) may impair glucose homeostasis through circadian rhythm disturbances. We prospectively investigated the relationship between residential night-time RTN and subsequent eight-year change in glycosylated hemoglobin (ΔHbA1c) in 3350 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), adjusting for diabetes risk factors and air pollution levels. Annual average RTN (Lnight) was assigned to participants in 2001 using validated Swiss noise models. HbA1c was measured in 2002 and 2011 using liquid chromatography. We applied mixed linear models to explore RTN–ΔHbA1c association and its modification by a genetic risk score of six common circadian-related MTNR1B variants (MGRS). A 10 dB difference in RTN was associated with a 0.02% (0.003–0.04%) increase in mean ΔHbA1c in 2142 non-movers. RTN–ΔHbA1c association was modified by MGRS among diabetic participants (Pinteraction = 0.001). A similar trend in non-diabetic participants was non-significant. Among the single variants, we observed strongest interactions with rs10830963, an acknowledged diabetes risk variant also implicated in melatonin profile dysregulation. Night-time RTN may impair glycemic control, especially in diabetic individuals, through circadian rhythm disturbances. Experimental sleep studies are needed to test whether noise control may help individuals to attain optimal glycemic levels.
Journal of the Acoustical Society of America | 2015
Reto Pieren; Kurt Heutschi
Recently, the accuracy of the parallel transfer matrix method (P-TMM) and the admittance sum method (ASM) in the prediction of the absorption properties of parallel assemblies of materials was investigated [Verdière, Panneton, Elkoun, Dupont, and Leclaire, J. Acoust. Soc. Am. 136, EL90-EL95 (2014)]. It was demonstrated that P-TMM is more versatile than ASM, as a larger variety of different backing configurations can be handled. Here it will be shown that the same universality is offered by the equivalent circuit method.
Textile Research Journal | 2018
Reto Pieren; Beat Schäffer; Stefan Schoenwald; Kurt Eggenschwiler
Textile curtains can be designed to be good sound absorbers. Their acoustical performance, as usually described by the sound absorption coefficient, not only depends on the textile itself but also on the drapery fullness and the backing condition, that is, the spacing between the fabric and a rigid backing wall, or the absence of a backing in the case of a freely hanging curtain. This article reviews existing models to predict the diffuse-field sound absorption coefficient, which to date can only predict the case of flat curtains. A set of existing models is extended to the case of curtains with drapery fullness using a semi-empirical approach. The models consider different backing conditions, including freely hanging curtains. The existing and new models are validated by comparing predicted sound absorption coefficients with data measured in a reverberation room. Hereby, curtains consisting of different fabrics and with different degrees of fullness are considered. Besides situations with rigid backing, also the measurement data of textiles hung freely in space are included in this study. Comparisons reveal a very good agreement between measured and predicted sound absorption coefficients. Compared to currently available commercial sound absorption prediction software that can only handle the situation of flat textiles with rigid backing, the results of the presented models not only show a better agreement with measured data, but also cover a broader range of situations. The presented models are thus well applicable in the design and development of new textiles as well as in the room acoustical planning process.
Collaboration
Dive into the Reto Pieren's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputs