Reuben S. Aspden
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reuben S. Aspden.
Nature Communications | 2015
Peter A. Morris; Reuben S. Aspden; Jessica Bell; Robert W. Boyd; Miles J. Padgett
Low-light-level imaging techniques have application in many diverse fields, ranging from biological sciences to security. A high-quality digital camera based on a multi-megapixel array will typically record an image by collecting of order 105 photons per pixel, but by how much could this photon flux be reduced? In this work we demonstrate a single-photon imaging system based on a time-gated intensified camera from which the image of an object can be inferred from very few detected photons. We show that a ghost-imaging configuration, where the image is obtained from photons that have never interacted with the object, is a useful approach for obtaining images with high signal-to-noise ratios. The use of heralded single photons ensures that the background counts can be virtually eliminated from the recorded images. By applying principles of image compression and associated image reconstruction, we obtain high-quality images of objects from raw data formed from an average of fewer than one detected photon per image pixel.
New Journal of Physics | 2013
Reuben S. Aspden; Daniel S. Tasca; Robert W. Boyd; Miles J. Padgett
Correlated photon imaging, popularly known as ghost imaging, is a technique whereby an image is formed from light that has never interacted with the object. In ghost imaging experiments, two correlated light fields are produced. One of these fields illuminates the object, and the other field is measured by a spatially resolving detector. In the quantum regime, these correlated light fields are produced by entangled photons created by spontaneous parametric down-conversion. To date, all correlated photon ghost imaging experiments have scanned a single-pixel detector through the field of view to obtain spatial information. However, scanning leads to poor sampling efficiency, which scales inversely with the number of pixels, N, in the image. In this work, we overcome this limitation by using a time-gated camera to record the single- photon events across the full scene. We obtain high-contrast images, 90%, in either the image plane or the far field of the photon pair source, taking advantage of the Einstein-Podolsky-Rosen-like correlations in position and momentum of the photon pairs. Our images contain a large number of modes, >500, creating opportunities in low-light-level imaging and in quantum information processing.
Journal of Optics | 2016
Reuben S. Aspden; Peter A. Morris; Ruiqing He; Qian Chen; Miles J. Padgett
We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the images exhibit isotropic edge-enhancement. This imaging technique is the first demonstration of a full-field, phase-contrast imaging system with non-local edge enhancement, and enables imaging of phase objects using significantly fewer photons than standard phase-contrast imaging techniques.
Journal of Modern Optics | 2014
Reuben S. Aspden; Daniel S. Tasca; Andrew Forbes; Robert W. Boyd; Miles J. Padgett
The Klyshko advanced-wave picture is a well-known tool useful in the conceptualisation of parametric down-conversion (SPDC) experiments. Despite being well-known and understood, there have been few experimental demonstrations illustrating its validity. Here, we present an experimental demonstration of this picture using a time-gated camera in an image-based coincidence measurement. We show an excellent agreement between the spatial distributions as predicted by the Klyshko picture and those obtained using the SPDC photon pairs. An interesting speckle feature is present in the Klyshko predictive images due to the spatial coherence of the back-propagated beam in the multi-mode fibre. This effect can be removed by mechanically twisting the fibre, thus degrading the spatial coherence of the beam and time-averaging the speckle pattern, giving an accurate correspondence between the predictive and SPDC images.
American Journal of Physics | 2016
Reuben S. Aspden; Miles J. Padgett; Gabriel C. Spalding
Commercially available cameras do not have a low-enough dark noise to directly capture double-slit interference at the single photon level. In this work, camera noise levels are significantly reduced by activating the camera only when the presence of a photon has been detected by the independent detection of a time-correlated photon produced via parametric down-conversion. This triggering scheme provides the improvement required for direct video imaging of Youngs double-slit experiment with single photons, allowing clarified versions of this foundational demonstration. We present video data of the evolving interference patterns. Also, we introduce variations on this experiment aimed at promoting discussion of the role spatial coherence plays in such a measurement, emphasizing complementary aspects of single-photon measurement and highlighting the roles of transverse position and momentum correlations between down-converted photons, including examples of “ghost” imaging and diffraction.
Journal of Modern Optics | 2016
Ermes Toninelli; Reuben S. Aspden; David Phillips; Graham M. Gibson; Miles J. Padgett
Spatially coherent helically phased light beams carry orbital angular momentum (OAM) and contain phase singularities at their centre. Destructive interference at the position of the phase singularity means the intensity at this point is necessarily zero, which results in a high contrast between the centre and the surrounding annular intensity distribution. Beams of reduced spatial coherence yet still carrying OAM have previously been referred to as Rankine vortices. Such beams no longer possess zero intensity at their centre, exhibiting a contrast that decreases as their spatial coherence is reduced. In this work, we study the contrast of a vortex beam as a function of its spatial coherence and topological charge. We show that beams carrying higher values of topological charge display a radial intensity contrast that is more resilient to a reduction in spatial coherence of the source.
Optics Express | 2018
Paul-Antoine Moreau; Ermes Toninelli; Peter A. Morris; Reuben S. Aspden; Thomas Gregory; Gabriel C. Spalding; Robert W. Boyd; Miles J. Padgett
Quantum ghost imaging uses photon pairs produced from parametric downconversion to enable an alternative method of image acquisition. Information from either one of the photons does not yield an image, but an image can be obtained by harnessing the correlations between them. Here we present an examination of the resolution limits of such ghost imaging systems. In both conventional imaging and quantum ghost imaging the resolution of the image is limited by the point-spread function of the optics associated with the spatially resolving detector. However, whereas in conventional imaging systems the resolution is limited only by this point spread function, in ghost imaging we show that the resolution can be further degraded by reducing the strength of the spatial correlations inherent in the downconversion process.
IEEE Transactions on Computational Imaging | 2017
Yoann Altmann; Reuben S. Aspden; Miles J. Padgett; Stephen McLaughlin
This paper discusses new methods for processing images in the photon-limited regime where the number of photons per pixel is binary. We present a new Bayesian denoising method for binary, single-photon images. Each pixel measurement is assumed to follow a Bernoulli distribution whose mean is related by a nonlinear function to the underlying intensity value to be recovered. Adopting a Bayesian approach, we assign the unknown intensity field a smoothness promoting spatial and potentially temporal prior while enforcing the positivity of the intensity. A stochastic simulation method is then used to sample the resulting joint posterior distribution and estimate the unknown intensity, as well as the regularization parameters. We show that this new unsupervised denoising method can also be used to analyze images corrupted by Poisson noise. The proposed algorithm is compared to state-of-the art denoising techniques dedicated to photon-limited images using synthetic and real single-photon measurements. The results presented illustrate the potential benefits of the proposed methodology for photon-limited imaging, in particular with non photon-number resolving detectors.
Scientific Reports | 2018
Paul-Antoine Moreau; Peter A. Morris; Ermes Toninelli; Thomas Gregory; Reuben S. Aspden; Gabriel C. Spalding; Robert W. Boyd; Miles J. Padgett
Quantum ghost diffraction harnesses quantum correlations to record diffraction or interference features using photons that have never interacted with the diffractive element. By designing an optical system in which the diffraction pattern can be produced by double slits of variable width either through a conventional diffraction scheme or a ghost diffraction scheme, we can explore the transition between the case where ghost diffraction behaves as conventional diffraction and the case where it does not. For conventional diffraction the angular extent increases as the scale of the diffracting object is reduced. By contrast, we show that no matter how small the scale of the diffracting object, the angular extent of the ghost diffraction is limited (by the transverse extent of the spatial correlations between beams). Our study is an experimental realisation of Popper’s thought experiment on the validity of the Copenhagen interpretation of quantum mechanics. We discuss the implication of our results in this context and explain that it is compatible with, but not proof of, the Copenhagen interpretation.
Proceedings of SPIE | 2016
Reuben S. Aspden; Nathan R. Gemmell; Peter A. Morris; Daniel S. Tasca; Lena Mertens; Michael G. Tanner; Robert A. Kirkwood; Alessandro Ruggeri; Alberto Tosi; Robert W. Boyd; Gerald S. Buller; Robert H. Hadfield; Miles J. Padgett
Ghost imaging systems use down-conversion sources that produce twin output beams of position-correlated photons to produce an image of an object using photons that did not interact with the object. One of these beams illuminates the object and is detected by a single pixel detector while the image information is recovered from the second, spatially correlated, beam. We utilize this technique to obtain images of objects probed with 1.5μm photons whilst developing the image using a highly efficient, low-noise, photon-counting camera detecting the correlated photons at 460nm. The efficient transfer of the image information from infrared illumination to visible detection wavelengths and the ability to count single-photons allows the acquisition of an image while illuminating the object with an optical power density of only 100 pJ cm-2 s-1. We apply image reconstruction techniques based on compressive sensing to reconstruct our images from data sets containing far fewer photons than conventionally required. This wavelength-transforming ghost imaging technique has potential for the imaging of light-sensitive specimens or where covert operation is desired.