Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rewas Fatah is active.

Publication


Featured researches published by Rewas Fatah.


Cancer Research | 2007

The Inflammatory Cytokine Tumor Necrosis Factor-α Generates an Autocrine Tumor-Promoting Network in Epithelial Ovarian Cancer Cells

Hagen Kulbe; Richard B. Thompson; Julia Wilson; Stephen Robinson; Thorsten Hagemann; Rewas Fatah; David Gould; A. Ayhan; Frances R. Balkwill

Constitutive expression of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is characteristic of malignant ovarian surface epithelium. We investigated the hypothesis that this autocrine action of TNF-alpha generates and sustains a network of other mediators that promote peritoneal cancer growth and spread. When compared with two ovarian cancer cell lines that did not make TNF-alpha, constitutive production of TNF-alpha was associated with greater release of the chemokines CCL2 and CXCL12, the cytokines interleukin-6 (IL-6) and macrophage migration-inhibitory factor (MIF), and the angiogenic factor vascular endothelial growth factor (VEGF). TNF-alpha production was associated also with increased peritoneal dissemination when the ovarian cancer cells were xenografted. We next used RNA interference to generate stable knockdown of TNF-alpha in ovarian cancer cells. Production of CCL2, CXCL12, VEGF, IL-6, and MIF was decreased significantly in these cells compared with wild-type or mock-transfected cells, but in vitro growth rates were unaltered. Tumor growth and dissemination in vivo were significantly reduced when stable knockdown of TNF-alpha was achieved. Tumors derived from TNF-alpha knockdown cells were noninvasive and well circumscribed and showed high levels of apoptosis, even in the smallest deposits. This was reflected in reduced vascularization of TNF-alpha knockdown tumors. Furthermore, culture supernatants from such cells failed to stimulate endothelial cell growth in vitro. We conclude that autocrine production of TNF-alpha by ovarian cancer cells stimulates a constitutive network of other cytokines, angiogenic factors, and chemokines that may act in an autocrine/paracrine manner to promote colonization of the peritoneum and neovascularization of developing tumor deposits.


Blood | 2012

Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer

Alan G. Ramsay; Andrew Clear; Rewas Fatah; John G. Gribben

Cancer immune evasion is an emerging hallmark of disease progression. We have demonstrated previously that impaired actin polymerization at the T-cell immunologic synapse is a global immune dysfunction in chronic lymphocytic leukemia (CLL). Direct contact with tumor cells induces defective actin polarization at the synapse in previously healthy T cells, but the molecules mediating this dysfunction were not known. In the present study, we show via functional screening assays that CD200, CD270, CD274, and CD276 are coopted by CLL cells to induce impaired actin synapse formation in both allogeneic and autologous T cells. We also show that inhibitory ligand-induced impairment of T-cell actin dynamics is a common immunosuppressive strategy used by both hematologic (including lymphoma) and solid carcinoma cells. This immunosuppressive signaling targets T-cell Rho-GTPase activation. Of clinical relevance, the immunomodulatory drug lenalidomide prevented the induction of these defects by down-regulating tumor cell-inhibitory molecule expression. These results using human CLL as a model cancer establish a novel evasion mechanism whereby malignant cells exploit multiple inhibitory ligand signaling to down-regulate small GTPases and lytic synapse function in global T-cell populations. These findings should contribute to the design of immunotherapeutic strategies to reverse T-cell tolerance in cancer.


Blood | 2013

T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production

John C. Riches; Jeff K. Davies; Fabienne McClanahan; Rewas Fatah; Sameena Iqbal; Samir G. Agrawal; Alan G. Ramsay; John G. Gribben

T-cell exhaustion, originally described in chronic viral infections, was recently reported in solid and hematologic cancers. It is not defined whether exhaustion contributes to T-cell dysfunction observed in chronic lymphocytic leukemia (CLL). We investigated the phenotype and function of T cells from CLL patients and age-matched controls. CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD244, CD160, and PD1, with expansion of a PD1+BLIMP1HI subset. These molecules were most highly expressed in the expanded population of effector T cells in CLL. CLL CD8+ T cells showed functional defects in proliferation and cytotoxicity, with the cytolytic defect caused by impaired granzyme packaging into vesicles and nonpolarized degranulation. In contrast to virally induced exhaustion, CLL T cells showed increased production of interferon-γ and TNFα and increased expression of TBET, and normal IL2 production. These defects were not restricted to expanded populations of cytomegalovirus (CMV)–specific cells, although CMV seropositivity modulated the distribution of lymphocyte subsets, the functional defects were present irrespective of CMV serostatus. Therefore, although CLL CD8+ T cells exhibit features of T-cell exhaustion, they retain the ability to produce cytokines. These findings also exclude CMV as the sole cause of T-cell defects in CLL.


Blood | 2009

Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy

Alan G. Ramsay; Andrew Clear; G. Kelly; Rewas Fatah; J. Matthews; Finlay MacDougall; T. A. Lister; A. M. Lee; Maria Calaminici; John G. Gribben

An important hallmark of cancer progression is the ability of tumor cells to evade immune recognition. Understanding the relationship between neoplastic cells and the immune microenvironment should facilitate the design of improved immunotherapies. Here we identify impaired T-cell immunologic synapse formation as an active immunosuppressive mechanism in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). We found a significant reduction in formation of the F-actin immune synapse in tumor-infiltrating T cells (P < .01) from lymphoma patients compared with age-matched healthy donor cells. Peripheral blood T cells exhibited this defect only in patients with leukemic-phase disease. Moreover, we demonstrate that this T-cell defect is induced after short-term tumor cell contact. After 24-hour coculture with FL cells, previously healthy T cells showed suppressed recruitment of critical signaling proteins to the synapse. We further demonstrate repair of this defect after treatment of both FL cells and T cells with the immunomodulatory drug lenalidomide. Tissue microarray analysis identified reduced expression of the T-cell synapse signature proteins, including the cytolytic effector molecule Rab27A associated with poor prognosis, in addition to reduced T-cell numbers and activity with disease transformation. Our results highlight the importance of identifying biomarkers and immunotherapeutic treatments for repairing T-cell responses in lymphoma.


Arthritis Research & Therapy | 2007

Gene therapy with an improved doxycycline-regulated plasmid encoding a tumour necrosis factor-alpha inhibitor in experimental arthritis.

David Gould; Nasim Yousaf; Rewas Fatah; Maria C. Subang; Yuti Chernajovsky

Inhibition of tumour necrosis factor (TNF)-alpha with biological molecules has proven an effective treatment for rheumatoid arthritis, achieving a 20% improvement in American College of Rheumatology score in up to 65% of patients. The main drawback to these and many other biological treatments has been their expense, which has precluded their widespread application. Biological molecules could alternatively be delivered by gene therapy as the encoding DNA. We have developed novel plasmid vectors termed pGTLMIK and pGTTMIK, from which luciferase and a dimeric TNF receptor II (dTNFR) are respectively expressed in a doxycycline (Dox)-regulated manner. Regulated expression of luciferase from the self-contained plasmid pGTLMIK was examined in vitro in a variety of cell lines and in vivo following intramuscular delivery with electroporation in DBA/1 mice. Dox-regulated expression of luciferase from pGTLMIK of approximately 1,000-fold was demonstrated in vitro, and efficient regulation was observed in vivo. The vector pGTTMIK encoding dTNFR was delivered by the same route with and without administration of Dox to mice with collagen-induced arthritis. When pGTTMIK was delivered after the onset of arthritis, progression of the disease in terms of both paw thickness and clinical score was inhibited when Dox was also administered. Vectors with similar regulation characteristics may be suitable for clinical application.


Gene Therapy | 2008

Repopulation of B-lymphocytes with restricted gene expression using haematopoietic stem cells engineered with lentiviral vectors.

Taher E. Taher; C Tulone; Rewas Fatah; F D'Acquisto; David Gould; Rizgar A. Mageed

B-lymphocytes play a key role in the pathogenesis of many immune-mediated diseases, such as autoimmune and atopic diseases. Therefore, targeting B-lymphocytes provides a rationale for refining strategies to treat such diseases for long-term clinical benefits and minimal side effects. In this study we describe a protocol for repopulating irradiated mice with B-lymphocytes engineered for restricted expression of transgenes using haematopoietic stem cells. A self-inactivating lentiviral vector, which encodes enhanced green fluorescence protein (EGFP) from the spleen focus-forming virus (SFFV) promoter, was used to generate new vectors that permit restricted EGFP expression in B-lymphocytes. To achieve this, the SFFV promoter was replaced with the B-lymphocyte-restricted CD19 promoter. Further, an immunoglobulin heavy chain enhancer (Eμ) flanked by the associated matrix attachment regions (MARs) was inserted upstream of the CD19 promoter. Incorporation of the Eμ-MAR elements upstream of the CD19 promoter resulted in enhanced, stable and selective transgene expression in human and murine B-cell lines. In addition, this modification permitted enhanced selective EGFP expression in B-lymphocytes in vivo in irradiated mice repopulated with transduced bone marrow haematopoietic stem cells (BMHSCs). The study provides evidence for the feasibility of targeting B-lymphocytes for therapeutic restoration of normal B-lymphocyte functions in patients with B-cell-related diseases.


Journal of Molecular Medicine | 2012

A novel hybrid promoter responsive to pathophysiological and pharmacological regulation

Maria C. Subang; Rewas Fatah; Carly Bright; Patricia Blanco; Mariana Berenstein; Ying Wu; Osvaldo L. Podhajcer; Paul G. Winyard; Yuti Chernajovsky; David Gould

The aim of this study was to construct a promoter containing DNA motifs for an endogenous transcription factor associated with inflammation along with motifs for pharmacological regulation factors. We demonstrate in transfected cells that expression of a gene of interest is induced by hypoxic conditions or through pharmacological induction, and also show pharmacological repression. In vivo studies utilised electroporation of plasmid to mouse paws, a delivery method shown to be effective by bioluminescence imaging. For gene therapy, the promoter was used to drive expression of IL-1Ra in a paw inflammation model with therapeutic effect observed which was further enhanced when the promoter was additionally induced with a pharmacological activator. One of the most important observations from this study was that promoter induction by hypoxia or inflammation could be prevented by the pharmacological repressor in the absence of doxycycline. These studies demonstrate that hybrid promoters enable pharmacological adjustment to the pathophysiological level of gene expression and, importantly, that they allow termination of gene expression even in the presence of pathophysiological stimuli.


Expert Opinion on Drug Delivery | 2014

Latency can be conferred to a variety of cytokines by fusion with latency-associated peptide from TGF-β

Lisa Mullen; Anne Rigby; Michelle Sclanders; Gill Adams; Gayatri Mittal; Julia Colston; Rewas Fatah; Cristina Subang; Julie Foster; Philippa Francis-West; Mario Köster; Hansjörg Hauser; Lorna Layward; Sandrine Vessillier; Alex Annenkov; Sarah Al-Izki; Gareth Pryce; Chris Bolton; David Baker; David Gould; Yuti Chernajovsky

Objectives: Targeting cytokines to sites of disease has clear advantages because it increases their therapeutic index. We designed fusion proteins of the latent-associated peptide (LAP) derived from TGF-β with various cytokines via a matrix metalloproteinase (MMP) cleavage site. This design confers latency, increased half-life and targeting to sites of inflammation. The aim of this study is to determine whether this approach can be applied to cytokines of different molecular structures and sizes. Methods: Mature cytokines cloned downstream of LAP and a MMP cleavage site were expressed in 293T cells and assessed for latency and biological activity by Western blotting and bioassay. Results: We demonstrate here that fusion proteins of TGF-β, erythropoietin, IL-1ra, IL-10, IL-4, BMP-7, IGF1 and IL-17 were rendered latent by fusion to LAP, requiring cleavage to become active in respective bioassays. As further proof of principle, we also show that delivery of engineered TGF-β can inhibit experimental autoimmune encephalomyelitis and that this approach can be used to efficiently deliver cytokines to the brain and spinal cord in mice with this disease. Conclusions: The latent cytokine approach can be successfully applied to a range of molecules, including cytokines of different molecular structure and mass, growth factors and a cytokine antagonist.


Current Gene Therapy | 2014

Effects of APC De-targeting and GAr modification on the duration of luciferase expression from plasmid DNA delivered to skeletal muscle.

Maria C. Subang; Rewas Fatah; Ying Wu; Drew Hannaman; Jason Rice; Claire F. Evans; Yuti Chernajovsky; David Gould

Immune responses to expressed foreign transgenes continue to hamper progress of gene therapy development. Translated foreign proteins with intracellular location are generally less accessible to the immune system, nevertheless they can be presented to the immune system through both MHC Class I and Class II pathways. When the foreign protein luciferase was expressed following intramuscular delivery of plasmid DNA in outbred mice, expression rapidly declined over 4 weeks. Through modifications to the expression plasmid and the luciferase transgene we examined the effect of detargeting expression away from antigen-presenting cells (APCs), targeting expression to skeletal muscle and fusion with glycine-alanine repeats (GAr) that block MHC-Class I presentation on the duration of luciferase expression. De-targeting expression from APCs with miR142-3p target sequences incorporated into the luciferase 3’UTR reduced the humoral immune response to both native and luciferase modified with a short GAr sequence but did not prolong the duration of expression. When a skeletal muscle specific promoter was combined with the miR target sequences the humoral immune response was dampened and luciferase expression persisted at higher levels for longer. Interestingly, fusion of luciferase with a longer GAr sequence promoted the decline in luciferase expression and increased the humoral immune response to luciferase. These studies demonstrate that expression elements and transgene modifications can alter the duration of transgene expression but other factors will need to overcome before foreign transgenes expressed in skeletal muscle are immunologically silent.


Gastroenterology | 2013

Activated Pancreatic Stellate Cells Sequester CD8+ T Cells to Reduce Their Infiltration of the Juxtatumoral Compartment of Pancreatic Ductal Adenocarcinoma

Abasi Ene–Obong; Andrew Clear; Jennifer Watt; Jun Wang; Rewas Fatah; John C. Riches; John Marshall; Jo-Anne Chin Aleong; Claude Chelala; John G. Gribben; Alan G. Ramsay; Hemant M. Kocher

Collaboration


Dive into the Rewas Fatah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John G. Gribben

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

David Gould

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Clear

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

John C. Riches

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Maria C. Subang

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Jeff K. Davies

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Sameena Iqbal

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Samir G. Agrawal

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge