Rex A. C. Medeiros
Federal University of Campina Grande
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rex A. C. Medeiros.
International Journal of Quantum Information | 2005
Rex A. C. Medeiros; Francisco M. de Assis
We define a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.
international conference on telecommunications | 2004
Rex A. C. Medeiros; Francisco M. de Assis
We define the quantum zero-error capacity, a new kind of classical capacity of a noisy quantum channel. Moreover, the necessary requirement for which a quantum channel has zero-error capacity greater than zero is also given.
QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING | 2004
Rex A. C. Medeiros; Francisco M. de Assis
We give in this paper a formal proof that the zero‐error capacity of a noisy quantum channel is less than or equal to the Holevo‐Schumacher‐Westmoreland capacity.
international conference on telecommunications | 2004
Rex A. C. Medeiros; Francisco M. de Assis
Quantum authentication of classical messages is discussed. We propose a non-interactive hybrid protocol reaching informationtheoretical security, even when an eavesdropper possesses infinite quantum and classical computer power. We show that, under certain conditions, a quantum computer can only distinguish a sequence of pseudo random bits from a truly sequence of random bits with an exponentially small probability. This suggests the use of such generator together with hash functions in order to provide an authentication scheme reaching a desirable level of security.
Archive | 2016
Elloá B. Guedes; Francisco M. de Assis; Rex A. C. Medeiros
This chapter introduces some elementary concepts regarding information theory. First, we present entropy and other measures of information. Then, we discuss a very important quantity in classical information theory, the capacity of a discrete noisy channel. In the second part of this chapter, we give a brief introduction to the quantum information theory. We start with the von Neumann entropy and other measures of information. Then, we introduce the mathematical formulation of quantum channels, including the Choi-Jamiolkowski isomorphism. Accessible information, Holevo quantity and quantum channel capacities are discussed; the classical capacity of quantum channels is presented, as well as a brief introduction to the other kinds of quantum channel capacities.
Archive | 2016
Elloá B. Guedes; Francisco M. de Assis; Rex A. C. Medeiros
The first € price and the £ and
Archive | 2016
Elloá B. Guedes; Francisco M. de Assis; Rex A. C. Medeiros
price are net prices, subject to local VAT. Prices indicated with * include VAT for books; the €(D) includes 7% for Germany, the €(A) includes 10% for Austria. Prices indicated with ** include VAT for electronic products; 19% for Germany, 20% for Austria. All prices exclusive of carriage charges. Prices and other details are subject to change without notice. All errors and omissions excepted. E.B. Guedes, F.M. de Assis, R.A.d.C. Medeiros Quantum Zero-Error Information Theory
Archive | 2016
Elloá B. Guedes; Francisco M. de Assis; Rex A. C. Medeiros
We give a brief introduction to Quantum Information Processing. We start by defining the qubit, the fundamental unity of information in a quantum system. Then, we describe how the evolution is carried out in a quantum system and how we can bring information from a quantum system to a classical level by means of projective measurements and positive operator-value measurements. The density operator formalism is presented and its importance to quantum communications is discussed. We give an introduction to quantum entanglement, which does not have a classical counterpart. Finally, the four postulates of the quantum mechanics are presented using the formalist of density operators.
Archive | 2016
Elloá B. Guedes; Francisco M. de Assis; Rex A. C. Medeiros
This chapter introduces the zero-error secrecy capacity of quantum channels (ZESC), defined as the higher transmission rate that can be achieved by noisy quantum channels, allowing for the transmission of classical information without errors in an unconditionally secure way. We start by presenting some background concepts about incoherence-free subspaces and subsystems. Then, we formally define the zero-error secrecy capacity together with the communication model. The relation between ZESC and graph theory is discussed. We demonstrate the security provided by this approach and we give a number of examples considering different scenarios. Finally, we discuss some recent developments in the literature that are intrinsically connected with the zero-error secrecy capacity.
Archive | 2016
Elloá B. Guedes; Francisco M. de Assis; Rex A. C. Medeiros
This chapter aims to introduce the main concepts of the classical zero-error information theory. We begin by defining the zero-error capacity of a discrete memoryless channel and presenting some basic concepts, like adjacency and adjacency-reducing mappings. Then, we show how the problem of finding the zero-error capacity can be stated in terms of a graph quantity. The Lovasz theta function and some of its properties are presented and, lastly, the zero-error capacity of the sum and product of channels is discussed.