Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rex C. Haydon is active.

Publication


Featured researches published by Rex C. Haydon.


Journal of Bone and Joint Surgery, American Volume | 2003

Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs).

Hongwei Cheng; Wei Jiang; Frank M. Phillips; Rex C. Haydon; Ying Peng; Lan Zhou; Hue H. Luu; Naili An; Benjamin N. Breyer; Pantila Vanichakarn; Jan Paul Szatkowski; Jae Yoon Park; Tong-Chuan He

Background:Bone morphogenic proteins (BMPs) are known to promote osteogenesis, and clinical trials are currently underway to evaluate the ability of certain BMPs to promote fracture-healing and spinal fusion. The optimal BMPs to be used in different clinical applications have not been elucidated, an


Gene Therapy | 2004

Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery.

Quan Kang; Michael H. Sun; Hongwei Cheng; Ying Peng; Anthony G. Montag; Andrea T. Deyrup; Wei Jiang; Hue H. Luu; Jinyong Luo; Jan Paul Szatkowski; Pantila Vanichakarn; Jae Yoon Park; Yasha Li; Rex C. Haydon; Tong-Chuan He

Efficacious bone regeneration could revolutionize the clinical management of bone and musculoskeletal disorders. Although several bone morphogenetic proteins (BMPs) (mostly BMP-2 and BMP-7) have been shown to induce bone formation, it is unclear whether the currently used BMPs represent the most osteogenic ones. Until recently, comprehensive analysis of osteogenic activity of all BMPs has been hampered by the fact that recombinant proteins are either not biologically active or not available for all BMPs. In this study, we used recombinant adenoviruses expressing the 14 types of BMPs (AdBMPs), and demonstrated that, in addition to currently used BMP-2 and BMP-7, BMP-6 and BMP-9 effectively induced orthotopic ossification when either AdBMP-transduced osteoblast progenitors or the viral vectors were injected into the quadriceps of athymic mice. Radiographic and histological evaluation demonstrated that BMP-6 and BMP-9 induced the most robust and mature ossification at multiple time points. BMP-3, a negative regulator of bone formation, was shown to effectively inhibit orthotopic ossification induced by BMP-2, BMP-6, and BMP-7. However, BMP-3 exerted no inhibitory effect on BMP-9-induced bone formation, suggesting that BMP-9 may transduce osteogenic signaling differently. Our findings suggest that BMP-6 and BMP-9 may represent more effective osteogenic factors for bone regeneration.


Journal of Biological Chemistry | 2004

Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells

Qing Luo; Quan Kang; Weike Si; Wei Jiang; Jong Kyung Park; Ying Peng; Xinmin Li; Hue H. Luu; Jeffrey Luo; Anthony G. Montag; Rex C. Haydon; Tong-Chuan He

Osteoblast lineage-specific differentiation of mesenchymal stem cells is a well regulated but poorly understood process. Both bone morphogenetic proteins (BMPs) and Wnt signaling are implicated in regulating osteoblast differentiation and bone formation. Here we analyzed the expression profiles of mesenchymal stem cells stimulated with Wnt3A and osteogenic BMPs, and we identified connective tissue growth factor (CTGF) as a potential target of Wnt and BMP signaling. We confirmed the microarray results, and we demonstrated that CTGF was up-regulated at the early stage of BMP-9 and Wnt3A stimulations and that Wnt3A-regulated CTGF expression was β-catenin-dependent. RNA interference-mediated knockdown of CTGF expression significantly diminished BMP-9-induced, but not Wnt3A-induced, osteogenic differentiation, suggesting that Wnt3A may also regulate osteoblast differentiation in a CTGF-independent fashion. However, constitutive expression of CTGF was shown to inhibit both BMP-9- and Wnt3A-induced osteogenic differentiation. Exogenous expression of CTGF was shown to promote cell migration and recruitment of mesenchymal stem cells. Our findings demonstrate that CTGF is up-regulated by Wnt3A and BMP-9 at the early stage of osteogenic differentiation, which may regulate the proliferation and recruitment of osteoprogenitor cells; however, CTGF is down-regulated as the differentiation potential of committed pre-osteoblasts increases, strongly suggesting that tight regulation of CTGF expression may be essential for normal osteoblast differentiation of mesenchymal stem cells.


Frontiers in Bioscience | 2008

Regulation of osteogenic differentiation during skeletal development.

Zhong Liang Deng; Katie A. Sharff; Ni Tang; Wen Xin Song; Jinyong Luo; Xiaoji Luo; Jin Chen; Erwin Bennett; Russell R. Reid; David W. Manning; Anita Xue; Anthony G. Montag; Hue H. Luu; Rex C. Haydon; Tong-Chuan He

Bone formation during skeletal development involves a complex coordination among multiple cell types and tissues. Bone is of crucial importance for the human body, providing skeletal support, and serving as a home for the formation of hematopoietic cells and as a reservoir for calcium and phosphate. Bone is also continuously remodeled in vertebrates throughout life. Osteoblasts and osteoclasts are specialized cells responsible for bone formation and resorption, respectively. Early development of the vertebrate skeleton depends on genes that control the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations, where cells differentiate to osteoblasts. Significant progress has been made over the past decade in our understanding of the molecular framework that controls osteogenic differentiation. A large number of morphogens, signaling molecules, and transcriptional regulators have been implicated in regulating bone development. A partial list of these factors includes the Wnt/beta-catenin, TGF-beta/BMP, FGF, Notch and Hedgehog signaling pathways, and Runx2, Osterix, ATF4, TAZ, and NFATc1 transcriptional factors. A better understanding of molecular mechanisms behind osteogenic differentiation would not only help us to identify pathogenic causes of bone and skeletal diseases but also lead to the development of targeted therapies for these diseases.


Stem Cells and Development | 2009

A Comprehensive Analysis of the Dual Roles of BMPs in Regulating Adipogenic and Osteogenic Differentiation of Mesenchymal Progenitor Cells

Quan Kang; Wen-Xin Song; Qing Luo; Ni Tang; Jinyong Luo; Xiaoji Luo; Jin Chen; Yang Bi; Bai-Cheng He; Jong Kyung Park; Wei Jiang; Yi Tang; Jiayi Huang; Yuxi Su; Gao-Hui Zhu; Yun He; Hong Yin; Zhenming Hu; Yi Wang; Liang Chen; Guo-Wei Zuo; Xiaochuan Pan; Jikun Shen; Tamara Vokes; Russell R. Reid; Rex C. Haydon; Hue H. Luu; Tong-Chuan He

Pluripotent mesenchymal stem cells (MSCs) are bone marrow stromal progenitor cells that can differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. Several signaling pathways have been shown to regulate the lineage commitment and terminal differentiation of MSCs. Here, we conducted a comprehensive analysis of the 14 types of bone morphogenetic protein (BMPs) for their abilities to regulate multilineage specific differentiation of MSCs. We found that most BMPs exhibited distinct abilities to regulate the expression of Runx2, Sox9, MyoD, and PPARgamma2. Further analysis indicated that BMP-2, BMP-4, BMP-6, BMP-7, and BMP-9 effectively induced both adipogenic and osteogenic differentiation in vitro and in vivo. BMP-induced commitment to osteogenic or adipogenic lineage was shown to be mutually exclusive. Overexpression of Runx2 enhanced BMP-induced osteogenic differentiation, whereas knockdown of Runx2 expression diminished BMP-induced bone formation with a decrease in adipocyte accumulation in vivo. Interestingly, overexpression of PPARgamma2 not only promoted adipogenic differentiation, but also enhanced osteogenic differentiation upon BMP-2, BMP-6, and BMP-9 stimulation. Conversely, MSCs with PPARgamma2 knockdown or mouse embryonic fibroblasts derived from PPARgamma2(-/-) mice exhibited a marked decrease in adipogenic differentiation, coupled with reduced osteogenic differentiation and diminished mineralization upon BMP-9 stimulation, suggesting that PPARgamma2 may play a role in BMP-induced osteogenic and adipogenic differentiation. Thus, it is important to understand the molecular mechanism behind BMP-regulated lineage divergence during MSC differentiation, as this knowledge could help us to understand the pathogenesis of skeletal diseases and may lead to the development of strategies for regenerative medicine.


Clinical Orthopaedics and Related Research | 2008

Osteosarcoma Development and Stem Cell Differentiation

Ni Tang; Wen-Xin Song; Jinyong Luo; Rex C. Haydon; Tong-Chuan He

Osteosarcoma is the most common nonhematologic malignancy of bone in children and adults. The peak incidence occurs in the second decade of life, with a smaller peak after age 50. Osteosarcoma typically arises around the growth plate of long bones. Most osteosarcoma tumors are of high grade and tend to develop pulmonary metastases. Despite clinical improvements, patients with metastatic or recurrent diseases have a poor prognosis. Here, we reviewed the current understanding of human osteosarcoma, with an emphasis on potential links between defective osteogenic differentiation and bone tumorigenesis. Existing data indicate osteosarcoma tumors display a broad range of genetic and molecular alterations, including the gains, losses, or arrangements of chromosomal regions, inactivation of tumor suppressor genes, and the deregulation of major signaling pathways. However, except for p53 and/or RB mutations, most alterations are not constantly detected in the majority of osteosarcoma tumors. With a rapid expansion of our knowledge about stem cell biology, emerging evidence suggests osteosarcoma should be regarded as a differentiation disease caused by genetic and epigenetic changes that interrupt osteoblast differentiation from mesenchymal stem cells. Understanding the molecular pathogenesis of human osteosarcoma could ultimately lead to the development of diagnostic and prognostic markers, as well as targeted therapeutics for osteosarcoma patients.


Molecular and Cellular Biology | 2006

CCN1/Cyr61 Is Regulated by the Canonical Wnt Signal and Plays an Important Role in Wnt3A-Induced Osteoblast Differentiation of Mesenchymal Stem Cells

Weike Si; Quan Kang; Hue H. Luu; Jong Kyung Park; Qing Luo; Wen-Xin Song; Wei Jiang; Xiaoji Luo; Xinmin Li; Hong Yin; Anthony G. Montag; Rex C. Haydon; Tong-Chuan He

ABSTRACT Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/β-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.


Current Cancer Drug Targets | 2004

Wnt / β-Catenin Signaling Pathway as Novel Cancer Drug Targets

Hue H. Luu; Ruiwen Zhang; Rex C. Haydon; Elizabeth R. Rayburn; Quan Kang; Weike Si; Jong Kyung Park; Hui Wang; Ying Peng; Wei Jiang; Tong-Chuan He

Wnt proteins are a large family of secreted glycoproteins. Wnt proteins bind to the Frizzled receptors and LRP5/6 co-receptors, and through stabilizing the critical mediator beta-catenin, initiate a complex signaling cascade that plays an important role in regulating cell proliferation and differentiation. Deregulation of the canonical Wnt/beta-catenin signaling pathway, mostly by inactivating mutations of the APC tumor suppressor, or oncogenic mutations of beta-catenin, has been implicated in colorectal tumorigenesis. Although oncogenic mutations of beta-catenin have only been discovered in a small fraction of non-colon cancers, elevated levels of beta-catenin protein, a hallmark of activated canonical Wnt pathway, have been observed in most common forms of human malignancies, indicating that activation of this pathway may play an important role in tumor development. Over the past 15 years, our understanding of this signaling pathway has significantly improved with the identification of key regulatory proteins and the important downstream targets of beta-catenin/Tcf transactivation complex. Given the fact that Wnt/beta-catenin signaling is tightly regulated at multiple cellular levels, the pathway itself offers ample targeting nodal points for cancer drug development. In this review, we discuss some of the strategies that are being used or can be explored to target key components of the Wnt/beta-catenin signaling pathway in rational cancer drug discovery.


Genes and Diseases | 2014

Bone Morphogenetic Protein (BMP) signaling in development and human diseases.

Richard N. Wang; Jordan Green; Zhongliang Wang; Youlin Deng; Min Qiao; Michael Peabody; Qian Zhang; Jixing Ye; Zhengjian Yan; Sahitya Denduluri; Olumuyiwa Idowu; Melissa Li; Christine Shen; Alan Hu; Rex C. Haydon; Richard W. Kang; James M. Mok; Michael J. Lee; Hue L. Luu; Lewis L. Shi

Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.


Spine | 2003

Potential use of Sox9 gene therapy for intervertebral degenerative disc disease.

Ronjon Paul; Rex C. Haydon; Hongwei Cheng; Akira Ishikawa; Nikola Nenadovich; Wei Jiang; Lan Zhou; Benjamin N. Breyer; Tao Feng; Purnendu Gupta; Tong-Chuan He; Frank M. Phillips

Study Design. A new recombinant adenoviral vector expressing Sox9, a chondrocyte-specific transcription factor, was tested in a chondroblastic cell line and primary human intervertebral disc cells in vitro. Direct infection of intervertebral disc cells then was assessed in a rabbit model. Objectives. To deliver a potentially therapeutic viral vector expressing Sox9 to degenerative human and rabbit intervertebral discs cells, and to assess the effect of Sox9 expression on Type 2 collagen production. Summary of the Background Data. The concentration of competent Type 2 collagen, an essential constituent of the healthy nucleus pulposus, declines with intervertebral disc degeneration. Recent studies suggest that Sox9 upregulates Type 2 collagen production. Interventions that augment Type 2 collagen production by intervertebral disc cells may represent a novel therapeutic method for patients with degenerative disc disease. Methods. Adenoviral delivery vectors expressing Sox9 and green fluorescent protein were constructed using the AdEasy system. The chondroblastic cell line, HTB-94, and cultured human degenerated intervertebral disc cells were infected with the vectors. Reverse transcriptase-polymerase chain reaction and immunohistochemical analyses were performed to document increased Type 2 collagen expression. The AdSox9 virus then was injected directly into the intervertebral discs of three rabbits. After 5 weeks, the injected discs were evaluated histologically. Results. The AdSox9 virus efficiently transduced HTB-94 cells and degenerated human disc cells. Western blot analysis confirmed increased Sox9 production. Increased Type 2 collagen production was demonstrated in infected HTB-94 and human disc cells using both reverse transcriptase-polymerase chain reaction and immunohistochemical staining. In the rabbit model, cells infected with AdSox9 maintained a chondrocytic phenotype, and the architecture of the nucleus pulposus was preserved over a 5-week study period compared to control discs. Conclusions. A novel adenoviral vector efficiently increased Sox9 and Type 2 collagen synthesis in cultured chondroblastic cells and human degenerated disc cells. In a rabbit model, sustained Sox9 production preserved the histologic appearance of the nucleus pulposus cells in vivo. These findings suggest a potential role for Sox9 gene therapy in the treatment of human degenerative disc disease.

Collaboration


Dive into the Rex C. Haydon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Jiang

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Jinyong Luo

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Qing Luo

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Bi

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge