Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reyes Sierra-Alvarez is active.

Publication


Featured researches published by Reyes Sierra-Alvarez.


Chemosphere | 2008

Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge

Valeria Ochoa-Herrera; Reyes Sierra-Alvarez

Perfluorinated surfactants are emerging pollutants of increasing public health and environmental concern due to recent reports of their world-wide distribution, environmental persistence and bioaccumulation potential. Treatment methods for the removal of anionic perfluorochemical (PFC) surfactants from industrial effluents are needed to minimize the environmental release of these pollutants. Removal of PFC surfactants from aqueous solutions by sorption onto various types of granular activated carbon was investigated. Three anionic PFC surfactants, i.e., perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS), were evaluated for the ability to adsorb onto activated carbon. Additionally, the sorptive capacity of zeolites and sludge for PFOS was compared to that of granular activated carbon. Adsorption isotherms were determined at constant ionic strength in a pH 7.2 phosphate buffer at 30 degrees C. Sorption of PFOS onto activated carbon was stronger than PFOA and PFBS, suggesting that the length of the fluorocarbon chain and the nature of the functional group influenced sorption of the anionic surfactants. Among all adsorbents evaluated in this study, activated carbon (Freundlich K(F) values=36.7-60.9) showed the highest affinity for PFOS at low aqueous equilibrium concentrations, followed by the hydrophobic, high-silica zeolite NaY (Si/Al 80, K(F)=31.8), and anaerobic sludge (K(F)=0.95-1.85). Activated carbon also displayed a superior sorptive capacity at high soluble concentrations of the surfactant (up to 80 mg l(-1)). These findings indicate that activated carbon adsorption is a promising treatment technique for the removal of PFOS from dilute aqueous streams.


Applied Microbiology and Biotechnology | 1991

The effect of aromatic structure on the inhibition of acetoclastic methanogenesis in granular sludge.

Reyes Sierra-Alvarez; G. Lettinga

SummaryBenzene derivatives are important constituents of certain effluents discharged by pulp and paper, petrochemical and chemical industries. The anaerobic treatment of these waste-waters can be limited due to methanogenic inhibition exerted by aromatic compounds. The objective of this study was to evaluate the effect of aromatic structure on acetoclastic methanogenic inhibition. The toxicity to acetoclastic methanogens was assayed in serum flasks utilizing granular sludge as inoculum. Among the monosubstituted benzenes, chlorobenzene, methoxybenzene and benzaldehyde were the most toxic with 50% inhibition occurring at concentrations of 3.4, 4.2 and 5.2 mm, respectively. In contrast, benzoate was the least inhibitory: concentrations up to 57.3 mm were non-toxic. In general, the toxicity of aromatic compounds increased with increasing length of aliphatic side-chains, increasing the number of alkyl or chlorine groups. The logarithm of the partition coefficient octanol/water (log P), an indicator of hydrophobicity, was observed to be positively correlated with the methanogenic inhibition. The results indicate that hydrophobicity is an important factor contributing to the high toxicity of the most inhibitory aromatic compounds.


Science of The Total Environment | 2011

Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems

Valeria Ochoa-Herrera; Glendy León; Qais Banihani; Jim A. Field; Reyes Sierra-Alvarez

Copper is an essential element, however, this heavy metal is an inhibitor of microbial activity at relatively low concentrations. The objective of this study was to evaluate the inhibitory effect of copper(II) towards various microbial trophic groups responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of the batch bioassays indicated that copper(II) caused severe inhibition of key microbial populations in wastewater treatment systems. Denitrifying bacteria were found to be very sensitive to the presence of copper(II). The concentrations of copper(II) causing 50% inhibition (IC(50)) on the metabolic activity of denitrifiers was 0.95 mg L(-1). Copper was also inhibitory to fermentative bacteria, aerobic glucose-degrading heterotrophs, and nitrifying bacteria (IC(50) values=3.5, 4.6 and 26.5 mg L(-1), respectively). Nonetheless, denitrifying and nitrifying bacteria showed considerable recovery of their metabolic activity after only several days of exposure to high copper levels (up to 25 and 100mg Cu(II) L(-1) for denitrification and nitrification, respectively). The recovery could be due to attenuation of soluble copper or to microbial adaptation.


Journal of Biotechnology | 1997

Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains

María Teresa Moreira; Gumersindo Feijoo; Reyes Sierra-Alvarez; J.M. Lema; Jim A. Field

Twenty-five white rot fungal strains were tested for their ability to bleach Eucalyptus globulus oxygen delignified kraft pulp (OKP). Under nitrogen-limited culture conditions, eight outstanding biobleaching strains were identified that increased the brightness of OKP by more than 10 ISO units compared to pulp incubated in sterile control medium. The highest brightness gain of approximately 13 ISO units was obtained with Bjerkandera sp. strain BOS55, providing a high final brightness of 82% ISO. This strain also caused the greatest level of delignification, decreasing the kappa number of OKP by 29%. When the white rot fungal strains were tested in nitrogen-sufficient medium, the extracellular activities of laccase and peroxidases increased in many strains; nonetheless, the pulp handsheets were either destroyed or brightness gains were lower than those obtained under nitrogen-limitation. The titer of ligninolytic enzymes was not found to be indicative of biobleaching potential. However, the best biobleaching strains were generally characterized by a predominance of manganese dependent peroxidase (MnP) activity compared to other ligninolytic enzymes and by a high decolorizing activity towards the polyanthraquinone ligninolytic indicator dye, Poly R-478.


Biodegradation | 2008

Microbial degradation of chlorinated benzenes

Jim A. Field; Reyes Sierra-Alvarez

Chlorinated benzenes are important industrial intermediates and solvents. Their widespread use has resulted in broad distribution of these compounds in the environment. Chlorobenzenes (CBs) are subject to both aerobic and anaerobic metabolism. Under aerobic conditions, CBs with four or less chlorine groups are susceptible to oxidation by aerobic bacteria, including bacteria (Burkholderia, Pseudomonas, etc.) that grow on such compounds as the sole source of carbon and energy. Sound evidence for the mineralization of CBs has been provided based on stoichiometric release of chloride or mineralization of 14C-labeled CBs to 14CO2. The degradative attack of CBs by these strains is initiated with dioxygenases eventually yielding chlorocatechols as intermediates in a pathway leading to CO2 and chloride. Higher CBs are readily reductively dehalogenated to lower chlorinated benzenes in anaerobic environments. Halorespiring bacteria from the genus Dehalococcoides are implicated in this conversion. Lower chlorinated benzenes are less readily converted, and mono-chlorinated benzene is recalcitrant to biotransformation under anaerobic conditions.


Chemosphere | 2013

Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents

José M. Carvajal-Arroyo; Wenjie Sun; Reyes Sierra-Alvarez; Jim A. Field

Anaerobic ammonium oxidation (anammox) is an emerging technology for nitrogen removal that provides a more environmentally sustainable and cost effective alternative compared to conventional biological treatment methods. The objective of this study was to investigate the inhibitory impact of anammox substrates, metabolites and common wastewater constituents on the microbial activity of two different anammox enrichment cultures (suspended and granular), both dominated by bacteria from the genus Brocadia. Inhibition was evaluated in batch assays by comparing the N(2) production rates in the absence or presence of each compound supplied in a range of concentrations. The optimal pH was 7.5 and 7.3 for the suspended and granular enrichment cultures, respectively. Among the substrates or products, ammonium and nitrate caused low to moderate inhibition, whereas nitrite caused almost complete inhibition at concentrations higher than 15 mM. The intermediate, hydrazine, either stimulated or caused low inhibition of anammox activity up to 3mM. Of the common constituents in wastewater, hydrogen sulfide was the most severe inhibitor, with 50% inhibitory concentrations (IC(50)) as low as 0.03 mM undissociated H(2)S. Dissolved O(2) showed moderate inhibition (IC(50)=2.3-3.8 mg L(-1)). In contrast, phosphate and salinity (NaCl) posed very low inhibition. The suspended- and granular anammox enrichment cultures had similar patterns of response to the various inhibitory stresses with the exception of phosphate. The findings of this study provide comprehensive insights on the tolerance of the anammox process to a wide variety of potential inhibiting compounds.


Holzforschung | 1999

Biodegradability of extractives in sapwood and heartwood from Scots pine by sapstain and white rot fungi

M.J. Martinez-Inigo; P. Immerzeel; Ana Gutiérrez; J.C. del Río; Reyes Sierra-Alvarez

Summary The fungal degradation of lipophilic extractives in sapwood and heartwood from Scots pine (Pinus sylvestris) was studied. In sapwood, the white rot fungi, Bjerkandera sp. and Funalia trogii, removed higher amounts of extractives than the sapstain strains, Ophiostoma ainoae and Ceratocystis allantospora. Triglycerides, long chain fatty acids, steryl esters and waxes in pine sapwood were almost completely degraded by all the fungi. Sterols and resin acids were also extensively degraded by the white rot strains; however, these components were not or only poorly removed by the sapstain fungi. The removal of total extractives by all the fungal strains was higher in sapwood as compared to heartwood. The highly concentrated extractive fraction in pine heartwood mainly consists of resin acids. As observed in sapwood, sapstain were also poorly effective in the degradation of the resin acids present in heartwood. The fungal degradation of heartwood extractives was not only limited by the degradative ability of the various test microorganisms, but also by the inhibitory effect exerted by the extractive fraction. The white rot fungus F. trogii was particularly inhibited on heartwood. Bjerkandera sp. showed a higher tolerance to toxic extractives and was the most efficient fungus in degrading extractive constituents in both Scots pine heartwood and sapwood. Therefore, Bjerkandera sp. strain BOS55 should be considered as a potential agent for pitch control in pulp and paper manufacture.


Bioresource Technology | 2012

Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment

Francisco Gómez-Rivera; Jim A. Field; Dustin Brown; Reyes Sierra-Alvarez

This study investigated the fate of nano-CeO(2) during municipal wastewater treatment using a laboratory-scale activated sludge (A/S) system fed with primarily-treated municipal wastewater and nano-CeO(2) (55.0 mg Ce/L). Nano-CeO(2) was highly removed during A/S treatment (96.6% total Ce). Extensive removal of CeO(2) <200 nm was also attained and the concentration escaping treatment was only 0.11 mg Ce/L. Elimination occurred mainly by aggregation and settling of CeO(2) particles, promoted by circumneutral pH values and by nanoparticle interactions with organic and/or inorganic wastewater constituents. Biosorption also contributed to CeO(2) removal as shown by sludge analysis and batch adsorption studies. Batch bioassays demonstrated that nano-CeO(2) only exerted inhibition of O(2) uptake by A/S at concentrations exceeding those in the bioreactor feed (50% inhibition at 950 mg CeO(2)/L). These findings indicate that A/S treatment is expected to provide extensive removal of nano-CeO(2) in municipal wastewaters.


Journal of Hazardous Materials | 2011

Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae

Citlali García-Saucedo; Jim A. Field; Lila Otero-González; Reyes Sierra-Alvarez

Increasing use of nanomaterials necessitates an improved understanding of their potential impact on environment health. This study evaluated the cytotoxicity of nanosized HfO(2), SiO(2), Al(2)O(3) and CeO(2) towards the eukaryotic model organism Saccharomyces cerevisiae, and characterized their state of dispersion in bioassay medium. Nanotoxicity was assessed by monitoring oxygen consumption in batch cultures and by analysis of cell membrane integrity. CeO(2), Al(2)O(3), and HfO(2) nanoparticles were highly unstable in yeast medium and formed micron-sized, settleable agglomerates. A non-toxic polyacrylate dispersant (Dispex A40) was used to improve nanoparticle stability and determine the impact of enhanced dispersion on toxicity. None of the NPs tested without dispersant inhibited O(2) uptake by yeast at concentrations as high as 1000 mg/L. Dispersant supplementation only enhanced the toxicity of CeO(2) (47% at 1000 mg/L). Dispersed SiO(2) and Al(2)O(3) (1000 mg/L) caused cell membrane damage, whereas dispersed HfO(2) and CeO(2) did not cause significant disruption of membrane integrity at the same concentration. These results suggest that the O(2) uptake inhibition observed with dispersed CeO(2) NPs was not due to reduced cell viability. This is the first study evaluating toxicity of nanoscale HfO(2), SiO(2), Al(2)O(3) and CeO(2) to S. cerevisiae. Overall the results obtained demonstrate that these nanomaterials display low or no toxicity to yeast.


Water Research | 2009

Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

Valeria Ochoa-Herrera; Qais Banihani; Glendy León; Chandra Khatri; Jim A. Field; Reyes Sierra-Alvarez

Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

Collaboration


Dive into the Reyes Sierra-Alvarez's collaboration.

Researchain Logo
Decentralizing Knowledge