Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reza M. Salek is active.

Publication


Featured researches published by Reza M. Salek.


Nucleic Acids Research | 2013

MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data

Kenneth Haug; Reza M. Salek; Pablo Conesa; Janna Hastings; Paula de Matos; Mark Rijnbeek; Tejasvi Mahendraker; Mark A. Williams; Steffen Neumann; Philippe Rocca-Serra; Eamonn Maguire; Alejandra Gonzalez-Beltran; Susanna-Assunta Sansone; Julian L. Griffin; Christoph Steinbeck

MetaboLights (http://www.ebi.ac.uk/metabolights) is the first general-purpose, open-access repository for metabolomics studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Metabolomic profiling is an important tool for research into biological functioning and into the systemic perturbations caused by diseases, diet and the environment. The effectiveness of such methods depends on the availability of public open data across a broad range of experimental methods and conditions. The MetaboLights repository, powered by the open source ISA framework, is cross-species and cross-technique. It will cover metabolite structures and their reference spectra as well as their biological roles, locations, concentrations and raw data from metabolic experiments. Studies automatically receive a stable unique accession number that can be used as a publication reference (e.g. MTBLS1). At present, the repository includes 15 submitted studies, encompassing 93 protocols for 714 assays, and span over 8 different species including human, Caenorhabditis elegans, Mus musculus and Arabidopsis thaliana. Eight hundred twenty-seven of the metabolites identified in these studies have been mapped to ChEBI. These studies cover a variety of techniques, including NMR spectroscopy and mass spectrometry.


Neurochemistry International | 2010

A metabolomic study of the CRND8 transgenic mouse model of Alzheimer's disease.

Reza M. Salek; Jing Xia; Amy E. Innes; Brian C. Sweatman; Robert Adalbert; Suzanne Randle; Eileen McGowan; Piers C. Emson; Julian L. Griffin

Alzheimers disease is the most common neurodegenerative disease of the central nervous system characterized by a progressive loss in memory and deterioration of cognitive functions. In this study the transgenic mouse TgCRND8, which encodes a mutant form of the amyloid precursor protein 695 with both the Swedish and Indiana mutations and develops extracellular amyloid beta-peptide deposits as early as 2-3 months, was investigated. Extract from eight brain regions (cortex, frontal cortex, cerebellum, hippocampus, olfactory bulb, pons, midbrain and striatum) were studied using (1)H NMR spectroscopy. Analysis of the NMR spectra discriminated control from APP695 tissues in hippocampus, cortex, frontal cortex, midbrain and cerebellum, with hippocampal and cortical region being most affected. The analysis of the corresponding loading plots for these brain regions indicated a decrease in N-acetyl-L-aspartate, glutamate, glutamine, taurine (exception hippocampus), gamma-amino butyric acid, choline and phosphocholine (combined resonances), creatine, phosphocreatine and succinate in hippocampus, cortex, frontal cortex (exception gamma-amino butyric acid) and midbrain of affected animals. An increase in lactate, aspartate, glycine (except in midbrain) and other amino acids including alanine (exception frontal cortex), leucine, iso-leucine, valine and water soluble free fatty acids (0.8-0.9 and 1.2-1.3 ppm) were observed in the TgCRND8 mice. Our findings demonstrate that the perturbations in metabolism are more widespread and include the cerebellum and midbrain. Furthermore, metabolic perturbations are associated with a wide range of metabolites which could improve the diagnosis and monitoring of the progression of Alzheimers disease.


Metabolomics | 2013

NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations

Abdul-Hamid Emwas; Reza M. Salek; Julian L. Griffin; Jasmeen S. Merzaban

Metabolomics is a dynamic and emerging research field, similar to proteomics, transcriptomics and genomics in affording global understanding of biological systems. It is particularly useful in functional genomic studies in which metabolism is thought to be perturbed. Metabolomics provides a snapshot of the metabolic dynamics that reflect the response of living systems to both pathophysiological stimuli and/or genetic modification. Because this approach makes possible the examination of interactions between an organism and its diet or environment, it is particularly useful for identifying biomarkers of disease processes that involve the environment. For example, the interaction of a high fat diet with cardiovascular disease can be studied via such a metabolomics approach by modeling the interaction between genes and diet. The high reproducibility of NMR-based techniques gives this method a number of advantages over other analytical techniques in large-scale and long-term metabolomic studies, such as epidemiological studies. This approach has been used to study a wide range of diseases, through the examination of biofluids, including blood plasma/serum, urine, blister fluid, saliva and semen, as well as tissue extracts and intact tissue biopsies. However, complicating the use of NMR spectroscopy in biomarker discovery is the fact that numerous variables can effect metabolic composition including, fasting, stress, drug administration, diet, gender, age, physical activity, life style and the subject’s health condition. To minimize the influence of these variations in the datasets, all experimental conditions including sample collection, storage, preparation as well as NMR spectroscopic parameters and data analysis should be optimized carefully and conducted in an identical manner as described by the local standard operating protocol . This review highlights the potential applications of NMR-based metabolomics studies and gives some recommendations to improve sample collection, sample preparation and data analysis in using this approach.


Metabolomics | 2015

Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

Abdul-Hamid Emwas; Claudio Luchinat; Paola Turano; Leonardo Tenori; Raja Roy; Reza M. Salek; Danielle Ryan; Jasmeen S. Merzaban; Rima Kaddurah-Daouk; Ana Carolina de Mattos Zeri; G. A. Nagana Gowda; Daniel Raftery; Yulan Wang; Lorraine Brennan; David S. Wishart

AbstractThe metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.


GigaScience | 2013

The role of reporting standards for metabolite annotation and identification in metabolomic studies

Reza M. Salek; Christoph Steinbeck; Mark R. Viant; Royston Goodacre; Warwick B. Dunn

The application of reporting standards in metabolomics allow data from different laboratories to be shared, integrated and interpreted. Although minimum reporting standards related to metabolite identification were published in 2007, it is clear that significant efforts are required to ensure their continuous update and appropriate use by the metabolomics community. These include their use in metabolomics data submission (e.g., MetaboLights) and as a requirement for publication in peer-reviewed journals (e.g., Metabolomics). The Data Standards and Metabolite Identification Task Groups of the international Metabolomics Society are actively working to develop and promote these standards and educate the community on their use.


BMC Genomics | 2012

Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue – a GC-TOFMS based metabolomics study

Jan Budczies; Carsten Denkert; Berit Maria Müller; Scarlet F. Brockmöller; Frederick Klauschen; Balazs Gyorffy; Manfred Dietel; Christiane Richter-Ehrenstein; Ulrike Marten; Reza M. Salek; Julian L. Griffin; Mika Hilvo; Matej Orešič; Gert Wohlgemuth; Oliver Fiehn

BackgroundChanges in energy metabolism of the cells are common to many kinds of tumors and are considered a hallmark of cancer. Gas chromatography followed by time-of-flight mass spectrometry (GC-TOFMS) is a well-suited technique to investigate the small molecules in the central metabolic pathways. However, the metabolic changes between invasive carcinoma and normal breast tissues were not investigated in a large cohort of breast cancer samples so far.ResultsA cohort of 271 breast cancer and 98 normal tissue samples was investigated using GC-TOFMS-based metabolomics. A total number of 468 metabolite peaks could be detected; out of these 368 (79%) were significantly changed between cancer and normal tissues (p<0.05 in training and validation set). Furthermore, 13 tumor and 7 normal tissue markers were identified that separated cancer from normal tissues with a sensitivity and a specificity of >80%. Two-metabolite classifiers, constructed as ratios of the tumor and normal tissues markers, separated cancer from normal tissues with high sensitivity and specificity. Specifically, the cytidine-5-monophosphate / pentadecanoic acid metabolic ratio was the most significant discriminator between cancer and normal tissues and allowed detection of cancer with a sensitivity of 94.8% and a specificity of 93.9%.ConclusionsFor the first time, a comprehensive metabolic map of breast cancer was constructed by GC-TOF analysis of a large cohort of breast cancer and normal tissues. Furthermore, our results demonstrate that spectrometry-based approaches have the potential to contribute to the analysis of biopsies or clinical tissue samples complementary to histopathology.


Genome Medicine | 2012

Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery

Carsten Denkert; Elmar Bucher; Mika Hilvo; Reza M. Salek; Matej Orešič; Julian L. Griffin; Scarlet F. Brockmöller; Frederick Klauschen; Sibylle Loibl; Dinesh K. Barupal; Jan Budczies; Kristiina Iljin; Valentina Nekljudova; Oliver Fiehn

Breast cancer is the most common cancer in women worldwide, and the development of new technologies for better understanding of the molecular changes involved in breast cancer progression is essential. Metabolic changes precede overt phenotypic changes, because cellular regulation ultimately affects the use of small-molecule substrates for cell division, growth or environmental changes such as hypoxia. Differences in metabolism between normal cells and cancer cells have been identified. Because small alterations in enzyme concentrations or activities can cause large changes in overall metabolite levels, the metabolome can be regarded as the amplified output of a biological system. The metabolome coverage in human breast cancer tissues can be maximized by combining different technologies for metabolic profiling. Researchers are investigating alterations in the steady state concentrations of metabolites that reflect amplified changes in genetic control of metabolism. Metabolomic results can be used to classify breast cancer on the basis of tumor biology, to identify new prognostic and predictive markers and to discover new targets for future therapeutic interventions. Here, we examine recent results, including those from the European FP7 project METAcancer consortium, that show that integrated metabolomic analyses can provide information on the stage, subtype and grade of breast tumors and give mechanistic insights. We predict an intensified use of metabolomic screens in clinical and preclinical studies focusing on the onset and progression of tumor development.


Molecular & Cellular Proteomics | 2014

The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience

Johannes Griss; Andrew R. Jones; Timo Sachsenberg; Mathias Walzer; Laurent Gatto; Jürgen Hartler; Gerhard G. Thallinger; Reza M. Salek; Christoph Steinbeck; Nadin Neuhauser; Jürgen Cox; Steffen Neumann; Jun Fan; Florian Reisinger; Qing-Wei Xu; Noemi del Toro; Yasset Perez-Riverol; Fawaz Ghali; Nuno Bandeira; Ioannis Xenarios; Oliver Kohlbacher; Juan Antonio Vizcaíno; Henning Hermjakob

The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online.


Metabolomics | 2012

MetaboLights: towards a new COSMOS of metabolomics data management

Christoph Steinbeck; Pablo Conesa; Kenneth Haug; Tejasvi Mahendraker; Mark A. Williams; Eamonn Maguire; Philippe Rocca-Serra; Susanna-Assunta Sansone; Reza M. Salek; Julian L. Griffin

Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata (http://www.ebi.ac.uk/metabolights). It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6–8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.


Metabolomics | 2016

Data standards can boost metabolomics research, and if there is a will, there is a way

Philippe Rocca-Serra; Reza M. Salek; Masanori Arita; Elon Correa; Saravanan Dayalan; Alejandra Gonzalez-Beltran; Timothy M. D. Ebbels; Royston Goodacre; Janna Hastings; Kenneth Haug; Albert Koulman; Macha Nikolski; Matej Orešič; Susanna-Assunta Sansone; Daniel Schober; J. Smith; Christoph Steinbeck; Mark R. Viant; Steffen Neumann

Thousands of articles using metabolomics approaches are published every year. With the increasing amounts of data being produced, mere description of investigations as text in manuscripts is not sufficient to enable re-use anymore: the underlying data needs to be published together with the findings in the literature to maximise the benefit from public and private expenditure and to take advantage of an enormous opportunity to improve scientific reproducibility in metabolomics and cognate disciplines. Reporting recommendations in metabolomics started to emerge about a decade ago and were mostly concerned with inventories of the information that had to be reported in the literature for consistency. In recent years, metabolomics data standards have developed extensively, to include the primary research data, derived results and the experimental description and importantly the metadata in a machine-readable way. This includes vendor independent data standards such as mzML for mass spectrometry and nmrML for NMR raw data that have both enabled the development of advanced data processing algorithms by the scientific community. Standards such as ISA-Tab cover essential metadata, including the experimental design, the applied protocols, association between samples, data files and the experimental factors for further statistical analysis. Altogether, they pave the way for both reproducible research and data reuse, including meta-analyses. Further incentives to prepare standards compliant data sets include new opportunities to publish data sets, but also require a little “arm twisting” in the author guidelines of scientific journals to submit the data sets to public repositories such as the NIH Metabolomics Workbench or MetaboLights at EMBL-EBI. In the present article, we look at standards for data sharing, investigate their impact in metabolomics and give suggestions to improve their adoption.

Collaboration


Dive into the Reza M. Salek's collaboration.

Top Co-Authors

Avatar

Christoph Steinbeck

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth Haug

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Conesa

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Pablo Moreno

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark R. Viant

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge