Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rhodri Ceredig is active.

Publication


Featured researches published by Rhodri Ceredig.


Journal of Experimental Medicine | 2002

Overexpression of Interleukin (IL)-7 Leads to IL-15–independent Generation of Memory Phenotype CD8+ T Cells

William C. Kieper; Joyce T. Tan; Brea Bondi-Boyd; Laurent Gapin; Jonathan Sprent; Rhodri Ceredig; Charles D. Surh

Transgenic (TG) mice expressing a high copy number of interleukin (IL)-7 cDNA under the control of the major histocomaptability complex (MHC) class II promoter display a 10–20-fold increase in total T cell numbers. Here, we show that the increase in T cell numbers in IL-7 TG mice is most apparent at the level of memory phenotype CD44hi CD122hi CD8+ cells. Based on studies with T cell receptor (TCR) TG mice crossed to IL-7 TG mice, increased levels of IL-7 may provide costimulation for TCR recognition of self-MHC ligands and thus cause naive CD8+ cells to proliferate and differentiate into memory phenotype cells. In addition, a marked increase in CD44hi CD122hi CD8+ cells was found in IL-7 TG IL-15− mice. Since these cell are rare in normal IL-15− mice, the dependency of memory phenotype CD8+ cells on IL-15 can be overcome by overexpression of IL-7.


Stem Cell Research & Therapy | 2011

Mesenchymal stem cell effects on T-cell effector pathways

Michelle M. Duffy; Thomas Ritter; Rhodri Ceredig; Matthew D. Griffin

Mesenchymal stem (stromal) cells (MSCs) are rare, multipotent progenitor cells that can be isolated and expanded from bone marrow and other tissues. Strikingly, MSCs modulate the functions of immune cells, including T cells, B cells, natural killer cells, monocyte/macrophages, dendritic cells, and neutrophils. T cells, activated to perform a range of different effector functions, are the primary mediators of many autoimmune and inflammatory diseases as well as of transplant rejection and graft-versus-host disease. Well-defined T-cell effector phenotypes include the CD4+ (T helper cell) subsets Th1, Th2, and Th17 cells and cytotoxic T lymphocytes derived from antigen-specific activation of naïve CD8+ precursors. In addition, naturally occurring and induced regulatory T cells (Treg) represent CD4+ and CD8+ T-cell phenotypes that potently suppress effector T cells to prevent autoimmunity, maintain self-tolerance, and limit inflammatory tissue injury. Many immune-mediated diseases entail an imbalance between Treg and effector T cells of one or more phenotypes. MSCs broadly suppress T-cell activation and proliferation in vitro via a plethora of soluble and cell contact-dependent mediators. These mediators may act directly upon T cells or indirectly via modulation of antigen-presenting cells and other accessory cells. MSC administration has also been shown to be variably associated with beneficial effects in autoimmune and transplant models as well as in several human clinical trials. In a small number of studies, however, MSC administration has been found to aggravate T cell-mediated tissue injury. The multiple effects of MSCs on cellular immunity may reflect their diverse influences on the different T-cell effector subpopulations and their capacity to specifically protect or induce Treg populations. In this review, we focus on findings from the recent literature in which specific modulatory effects of MSCs on one or more individual effector T-cell subsets and Treg phenotypes have been examined in vitro, in relevant animal models of in vivo immunological disease, and in human subjects. We conclude that MSCs have the potential to directly or indirectly inhibit disease-associated Th1, Th2, and Th17 cells as well as cytotoxic T lymphocytes but that many key questions regarding the potency, specificity, mechanistic basis, and predictable therapeutic value of these modulatory effects remain unanswered.


Nature Immunology | 2002

Homeostasis of V alpha 14i NKT cells.

Jennifer L. Matsuda; Laurent Gapin; Stephane Sidobre; William C. Kieper; Joyce T. Tan; Rhodri Ceredig; Charles D. Surh; Mitchell Kronenberg

CD1d-reactive natural killer T (NKT) cells with an invariant Vα14 rearrangement (Vα14i) are a distinct subset of T lymphocytes that likely have important immune-regulatory functions. Little is known regarding the factors responsible for their peripheral survival. Using α-galactosylceramide–containing CD1d tetramers to detect Vα14i NKT cells, we show here that the expansion of Vα14i NKT cells in lymphopenic mice was not dependent on CD1d expression and was unaffected by the presence of host NKT cells. Additionally, we found that IL-15 was important in the expansion and/or survival of Vα14i NKT cells, with IL-7 playing a lesser role. These results demonstrate that the homeostatic requirements for CD1d-restricted NKT cells, which are CD4+ or CD4−CD8−, resemble those of CD8+ memory T cells. We propose that this expansion and/or survival in the periphery of Vα14i NKT cells is affected by competition for IL-15, and that IL-15–requiring cells—such as NK cells and CD8+ memory cells—may define the Vα14i NKT cell niche.


Immunology Today | 1990

Dissection of an inflammatory process induced by CD8+ T cells

Peter C. Doherty; Jane E. Allan; Felicity Lynch; Rhodri Ceredig

A massive delayed type hypersensitivity (DTH) reaction occurs in the cerebrospinal fluid (CSF) of mice with lymphocytic choriomeningitis (LCM). In this article, Peter Doherty and colleagues analyze this reaction together with the population dynamics of the regional lymph node to give a comprehensive picture of the events underlying this CD8+ T-cell-mediated immunopathological disease. Their findings are of general relevance to the understanding of inflammation.


European Journal of Immunology | 2011

Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor

Michelle M. Duffy; Jana Pindjakova; Shirley A. Hanley; Cathal McCarthy; Gudrun A. Weidhofer; Eva Sweeney; Karen English; Georgina Shaw; J. Mary Murphy; Frank Barry; Bernard P. Mahon; Orina Belton; Rhodri Ceredig; Matthew D. Griffin

Mesenchymal stem cells (MSCs) inhibit T‐cell activation and proliferation but their effects on individual T‐cell‐effector pathways and on memory versus naïve T cells remain unclear. MSC influence on the differentiation of naïve and memory CD4+ T cells toward the Th17 phenotype was examined. CD4+ T cells exposed to Th17‐skewing conditions exhibited reduced CD25 and IL‐17A expression following MSC co‐culture. Inhibition of IL‐17A production persisted upon re‐stimulation in the absence of MSCs. These effects were attenuated when cell–cell contact was prevented. Th17 cultures from highly purified naïve‐ and memory‐phenotype responders were similarly inhibited. Th17 inhibition by MSCs was reversed by indomethacin and a selective COX‐2 inhibitor. Media from MSC/Th17 co‐cultures contained increased prostaglandin E2 (PGE2) levels and potently suppressed Th17 differentiation in fresh cultures. MSC‐mediated Th17 inhibition was reversed by a selective EP4 antagonist and was mimicked by synthetic PGE2 and a selective EP4 agonist. Activation‐induced IL‐17A secretion by naturally occurring, effector‐memory Th17 cells from a urinary obstruction model was also inhibited by MSC co‐culture in a COX‐dependent manner. Overall, MSCs potently inhibit Th17 differentiation from naïve and memory T‐cell precursors and inhibit naturally‐occurring Th17 cells derived from a site of inflammation. Suppression entails cell‐contact‐dependent COX‐2 induction resulting in direct Th17 inhibition by PGE2 via EP4.


Transplantation | 1990

Effect of GK1.5 monoclonal antibody dosage on survival of pig proislet xenografts in CD4+ T cell-depleted mice.

Charmaine J. Simeonovic; Rhodri Ceredig; Wilson Jd

Treatment of CBA/H mice with 5 injections of anti-CD4 (GK1.5 mAb) terminating on day 10 posttransplant resulted in long-term survival (greater than or equal to 6 weeks) of fetal pig proislet (pancreatic islet precursor) xenografts. The GK1.5 mAb dose determined the duration of CD4+ T cell depletion and the extent to which the survival of pig proislet xenografts was prolonged. Sustained depletion of CD4+ T cells (0%, 1%, and 9% of total T cells in peripheral lymph nodes at 2, 4, and 6 weeks, respectively) and survival of proislet xenografts at 6 weeks posttransplant was observed when transplant recipients were treated with 5.4 mg GK1.5 mAb/injection. Treatment of transplanted mice with a suboptimal dose of GK1.5 mAb (0.2 mg/injection) resulted in the same level of depletion at 2 weeks posttransplant but a more rapid recovery of CD4+ T cells in the periphery (24% of total T cells at 4 weeks) and only temporary prolongation in xenograft survival (less than or equal to 4 weeks). Control xenografts showed evidence of graft destruction by as early as 6-7 days posttransplant and were completely rejected by 2 weeks. The rejection reaction consisted predominantly of CD4+ T cells, eosinophils and F4/80-positive macrophages. Only small numbers of CD8+ T cells were identified. CD4+ T cells therefore represented the major T cell component of the cellular infiltrate. In contrast, surviving xenografts in GK1.5 mAb-treated recipient mice showed essentially an absence of CD4+ T cells but presence of CD8+ T cells. This finding may be attributable to the increase (1.7-3.1-fold) in the absolute size of the population of CD8+ T cells in the periphery following GK1.5 mAb treatment in vivo. Compared with isolated fetal pig proislets, which contained only a small population of insulin-producing cells in addition to glucagon- and somatostatin-positive cells, surviving pig proislet xenografts contained mainly insulin-positive beta cells with smaller populations of glucagon- and somatostatin-positive cells. Fetal pig proislets therefore differentiate into insulin-producing islet tissue posttransplant and thus show evidence of normal development of endocrine function.


Blood | 2009

Expansion of peripheral naturally occurring T regulatory cells by Fms-like tyrosine kinase 3 ligand treatment

Lee Kim Swee; Nabil Bosco; Bernard Malissen; Rhodri Ceredig; Antonius Rolink

Fms-like tyrosine kinase 3 ligand (FLT3L) plays a major role in dendritic cell (DC) biology. Deficiency of FLT3L causes a dramatic decrease in DC numbers, whereas increasing its availability (by repetitive injections for 7-10 days) leads to a 10-fold increase in DC numbers. In this study, we show that FLT3L treatment indirectly leads to an expansion of peripheral naturally occurring T regulatory cells (NTregs). The FLT3L-induced increase in NTregs was still observed in thymectomized mice, ruling out the role of the thymus in this mechanism. Instead, the increased number of NTregs was due to proliferation of preexisting NTregs, most likely due to favored interactions with increased number of DCs. In vitro, we show that DCs induce regulatory T-cell (Treg) proliferation by direct cell contact and in an interleukin-2-dependent, T-cell receptor-independent manner. FLT3L could prevent death induced by acute graft-versus-host disease (GVHD). This study demonstrates unique aspects in the regulation of Treg homeostasis by DCs, which were unappreciated until now. It also reinforces the relevance of FLT3L treatment in GVHD by its ability to increase both the number of tolerizing DCs and NTregs.


Nature Immunology | 2002

Homeostasis of Vα14i NKT cells

Jennifer L. Matsuda; Laurent Gapin; Stephane Sidobre; William C. Kieper; Joyce T. Tan; Rhodri Ceredig; Charles D. Surh; Mitchell Kronenberg

CD1d-reactive natural killer T (NKT) cells with an invariant Vα14 rearrangement (Vα14i) are a distinct subset of T lymphocytes that likely have important immune-regulatory functions. Little is known regarding the factors responsible for their peripheral survival. Using α-galactosylceramide–containing CD1d tetramers to detect Vα14i NKT cells, we show here that the expansion of Vα14i NKT cells in lymphopenic mice was not dependent on CD1d expression and was unaffected by the presence of host NKT cells. Additionally, we found that IL-15 was important in the expansion and/or survival of Vα14i NKT cells, with IL-7 playing a lesser role. These results demonstrate that the homeostatic requirements for CD1d-restricted NKT cells, which are CD4+ or CD4−CD8−, resemble those of CD8+ memory T cells. We propose that this expansion and/or survival in the periphery of Vα14i NKT cells is affected by competition for IL-15, and that IL-15–requiring cells—such as NK cells and CD8+ memory cells—may define the Vα14i NKT cell niche.


Cellular Immunology | 1988

Antioxidants inhibit proliferation and cell surface expression of receptors for interleukin-2 and transferrin in T lymphocytes stimulated with phorbol myristate acetate and ionomycin

Geeta Chaudhri; Nicholas H. Hunt; Ian A. Clark; Rhodri Ceredig

We have previously shown that several antioxidant compounds inhibit the proliferation of T lymphocytes stimulated with alloantigen (Chaudhri, G., Clark, I. A., Hunt, N. H., Cowden, W. B., and Ceredig, R., J. Immunol. 136, 2646, 1986). We concluded from these studies that free oxygen radicals are positive mediators in T-lymphocyte activation and proliferation. In order to extend these studies we examined the effects of antioxidants on T cells stimulated with a combination of phorbol myristate acetate (PMA) and ionomycin. The following antioxidants were used: ferricyanide, an inhibitor of superoxide production; iron chelators, which block hydroxyl radical formation; and butylated hydroxyanisole, a free radical scavenger. Responder cells included purified peripheral T cells (Lyt-2+ or L3T4+ cells) and immature (Lyt-2-/L3T4-) thymocytes. All agents, in the micromolar range, caused a dose-dependent inhibition of proliferation of each T-cell subset studied. Flow microfluorometric analysis of T cells stimulated for 48 hr showed that the expression of interleukin-2 (IL-2) receptors and transferrin receptors was inhibited by all the antioxidants tested but not by hydroxyurea (HU), an inhibitor of the enzyme ribonucleotide reductase. In contrast, the expression of a third activation marker, phagocytic glycoprotein-1 (Pgp-1 or Lyt-24), was not affected by any of the agents. Furthermore, while both the antioxidants and HU inhibited T-cell cycling, analysis of a light-scattering parameter related to cell size indicated that the antioxidant-treated cells remained small while the HU-treated and control cells were larger and blast-like. Therefore, the mechanism of action of the three classes of antioxidants is similar, but quite distinct from the inhibition of proliferation caused by HU. Taken together, these results suggest that free radicals are involved in specific early events in T-cell activation.


European Journal of Immunology | 2005

The role of Notch and IL-7 signaling in early thymocyte proliferation and differentiation

Gina Balciunaite; Rhodri Ceredig; Hans-Jörg Fehling; Juan-Carlos Zuniga-Pflucker; Antonius Rolink

We have analyzed the roles of Notch and IL‐7 signaling in the proliferation and differentiation of mouse progenitor thymocyte subpopulations cultured on Notch delta‐like‐1 ligand‐expressing OP9 stromal cells. Using bulk and limiting dilution cultures, we show that DN1 and DN2 cells require both Notch and IL‐7 signaling for efficient proliferation and differentiation into cytoplasmic TCRβ and surface TCRα/β and TCRγ/δ expressing T cells. Selection for cytoplasmic TCRβ‐positive cells is dependent on preTα expression. Both γ/δ and α/β TCR expressing T cells arising in culture can be efficiently stimulated by anti‐CD3 cross‐linking, suggesting that they might be functional. The differentiation of adult, but not fetal, DN1 and DN2 thymocytes into CD4 and/or CD8 expressing cells is inhibited by IL‐7. Finally, efficient proliferation and differentiation of DN3 cells requires Notch signaling and preTCR expression, but is independent of IL‐7.

Collaboration


Dive into the Rhodri Ceredig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H R MacDonald

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Griffin

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Felicity Lynch

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey Brown

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Charmaine J. Simeonovic

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Jane E. Allan

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Noel F. Lowndes

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge