Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rhonda D. Prisby is active.

Publication


Featured researches published by Rhonda D. Prisby.


Frontiers in Endocrinology | 2013

Bone circulatory disturbances in the development of spontaneous bacterial chondronecrosis with osteomyelitis: a translational model for the pathogenesis of femoral head necrosis.

R. F. Wideman; Rhonda D. Prisby

This review provides a comprehensive overview of the vascularization of the avian growth plate and its subsequent role in the pathogenesis of bacterial chondronecrosis with osteomyelitis (BCO, femoral head necrosis). BCO sporadically causes high incidences of lameness in rapidly growing broiler (meat-type) chickens. BCO is believed to be initiated by micro-trauma to poorly mineralized columns of cartilage cells in the proximal growth plates of the leg bones, followed by colonization by hematogenously distributed opportunistic bacteria. Inadequate blood flow to the growth plate, vascular occlusion, and structural limitations of the microvasculature all have been implicated in the pathogenesis of BCO. Treatment strategies have been difficult to investigate because under normal conditions the incidence of BCO typically is low and sporadic. Rearing broilers on wire flooring triggers the spontaneous development of high incidences of lameness attributable to pathognomonic BCO lesions. Wire flooring imposes persistent footing instability and is thought to accelerate the development of BCO by amplifying the torque and shear stress imposed on susceptible leg joints. Wire flooring per se also constitutes a significant chronic stressor that promotes bacterial proliferation attributed to stress-mediated immunosuppression. Indeed, dexamethasone-mediated immunosuppression causes broilers to develop lameness primarily associated with avascular necrosis and BCO. Prophylactic probiotic administration consistently reduces the incidence of lameness in broilers reared on wire flooring, presumably by reducing bacterial translocation from the gastrointestinal tract that likely contributes to hematogenous infection of the leg bones. The pathogenesis of BCO in broilers is directly relevant to osteomyelitis in growing children, as well as to avascular femoral head necrosis in adults. Our new model for reliably triggering spontaneous osteomyelitis in large numbers of animals represents an important opportunity to conduct translational research focused on developing effective prophylactic and therapeutic treatments.


PLOS ONE | 2012

Aging and estrogen status: a possible endothelium-dependent vascular coupling mechanism in bone remodeling.

Rhonda D. Prisby; James M. Dominguez; Judy M. Muller-Delp; Matthew R. Allen; Michael D. Delp

Bone loss with aging and menopause may be linked to vascular endothelial dysfunction. The purpose of the study was to determine whether putative modifications in endothelium-dependent vasodilation of the principal nutrient artery (PNA) of the femur are associated with changes in trabecular bone volume (BV/TV) with altered estrogen status in young (6 mon) and old (24 mon) female Fischer-344 rats. Animals were divided into 6 groups: 1) young intact, 2) old intact, 3) young ovariectomized (OVX), 4) old OVX, 5) young OVX plus estrogen replacement (OVX+E2), and 6) old OVX+E2. PNA endothelium-dependent vasodilation was assessed in vitro using acetylcholine. Trabecular bone volume of the distal femoral metaphysis was determined by microCT. In young rats, vasodilation was diminished by OVX and restored with estrogen replacement (intact, 82±7; OVX, 61±9; OVX+E2, 90±4%), which corresponded with similar modifications in BV/TV (intact, 28.7±1.6; OVX, 16.3±0.9; OVX+E2, 25.7±1.4%). In old animals, vasodilation was unaffected by OVX but enhanced with estrogen replacement (intact, 55±8; OVX, 59±7; OVX+E2, 92±4%). Likewise, modifications in BV/TV followed the same pattern (intact, 33.1±1.6; OVX, 34.4±3.7; OVX+E2, 42.4±2.1%). Furthermore, in old animals with low endogenous estrogen (i.e., intact and old OVX), vasodilation was correlated with BV/TV (R2 = 0.630; P<0.001). These data demonstrate parallel effects of estrogen on vascular endothelial function and BV/TV, and provide for a possible coupling mechanism linking endothelium-dependent vasodilation to bone remodeling.


Bone | 2013

Vasodilation to PTH (1-84) in bone arteries is dependent upon the vascular endothelium and is mediated partially via VEGF signaling

Rhonda D. Prisby; Thomas Menezes; Jeremiah Campbell

BACKGROUND Intermittent PTH administration directly stimulates osteoblasts; however, mechanisms of bone accrual that are independent of the direct actions on osteoblasts may be under-appreciated. Our aims were to decipher (1) whether PTH 1-84 augments vasodilation of the femoral principal nutrient artery (PNA), (2) whether 15 days of intermittent PTH 1-84 augments endothelium-dependent and/or -independent vasodilation of the femoral PNA, and (3) the signaling mechanisms involved. METHODS Experiment 1: Femoral PNAs from male Wistar rats were exposed to cumulative doses of PTH 1-84 with and without an anti-vascular endothelial growth factor antibody and/or the endothelial NO synthase inhibitor l-NAME. Experiment 2: Male Wistar rats were administered PTH and/or the anti-VEGF antibody for 2 weeks. Subsequently, endothelium-dependent vasodilation to acetylcholine and endothelium-independent vasodilation to sodium nitroprusside were assessed. In addition, endothelium-dependent signaling pathways were analyzed by use of l-NAME and/or and the cyclooxygenase inhibitor indomethacin. RESULTS Cumulative doses of PTH 1-84 induced vasodilation of the femoral PNA, which was reduced by 38% and 87% with the anti-VEGF antibody and l-NAME, respectively. Secondly, 2 weeks of intermittent PTH 1-84 administration doubled trabecular bone volume, augmented bone formation parameters and reduced osteoclast activity. In addition, PTH enhanced endothelium-dependent vasodilation via up-regulation of NO. Co-administration of the anti-VEGF antibody (1) inhibited the PTH-induced increase in bone volume and remodeling parameters and (2) blunted the augmented vasodilator responsiveness of the PNA. Finally, endothelium-dependent vasodilation in PTH-treated rats was highly correlated with trabecular bone volume. CONCLUSION As hypothesized, PTH enhanced endothelium-dependent vasodilation of the femoral PNA via augmented NO production and was mediated partially through VEGF signaling. Further, vasodilation to PTH appears independent of vascular smooth muscle cell participation. More importantly, the strong association between vasodilation and bone volume suggests that bone arteriolar function is critical for PTH-induced bone anabolism.


Bone | 2013

Chronic skeletal unloading of the rat femur: Mechanisms and functional consequences of vascular remodeling

John N. Stabley; Rhonda D. Prisby; Bradley J. Behnke; Michael D. Delp

Chronic skeletal unloading diminishes hindlimb bone blood flow. The purpose of the present investigation was to determine 1) whether 7 and 14days of skeletal unloading alter femoral bone and marrow blood flow and vascular resistance during reloading, and 2) whether putative changes in bone perfusion are associated with a gross structural remodeling of the principal nutrient artery (PNA) of the femur. Six-month old male Sprague-Dawley rats were assigned to 7-d or 14-d hindlimb unloading (HU) or weight-bearing control groups. Bone perfusion was measured following 10min of standing (reloading) following the unloading treatment. Histomorphometry was used to determine PNA media wall thickness and maximal diameter. Bone blood flow, arterial pressure and PNA structural characteristics were used to calculate arterial shear stress and circumferential wall stress. During reloading, femoral perfusion was lower in the distal metaphyseal region of 7-d HU rats, and in the proximal and distal metaphyses, diaphysis and diaphyseal marrow of 14-d HU animals relative to that in control rats. Vascular resistance was also higher in all regions of the femur in 14-d HU rats during reloading relative to control animals. Intraluminal diameter of PNAs from 14-d HU rats (138±5μm) was smaller than that of control PNAs (162±6μm), and medial wall thickness was thinner in PNAs from 14-d HU (14.3±0.6μm) versus that of control (18.0±0.8μm) rats. Decreases in both shear stress and circumferential stress occurred in the PNA with HU that later returned to control levels with the reductions in PNA maximal diameter and wall thickness, respectively. The results demonstrate that chronic skeletal unloading attenuates the ability to increase blood flow and nutrient delivery to bone and marrow with immediate acute reloading due, in part, to a remodeling of the bone resistance vasculature.


Journal of Endocrinology | 2015

Type 2 diabetes alters bone and marrow blood flow and vascular control mechanisms in the ZDF rat

John N. Stabley; Rhonda D. Prisby; Bradley J. Behnke; Michael D. Delp

Bone health and cardiovascular function are compromised in individuals with type 2 diabetes mellitus (T2DM). The purpose of this study was to determine whether skeletal vascular control mechanisms are altered during the progression of T2DM in Zucker diabetic fatty (ZDF) rats. Responses of the principal nutrient artery (PNA) of the femur from obese ZDF rats with prediabetes, short-term diabetes, and long-term diabetes to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) vasodilation and potassium chloride, norepinephrine (NE), and a myogenic vasoconstrictor were determined in vitro. Few changes in the PNA vasomotor responses occurred for the prediabetic and short-term diabetic conditions. Endothelium-dependent and -independent vasodilation were reduced, and NE and myogenic vasoconstriction were increased in obese ZDF rats with long-term diabetes relative to lean age-matched controls. Differences in endothelium-dependent vasodilation of the femoral PNA between ZDF rats and controls were abolished by the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. The passive pressure-diameter response of the femoral PNA was also lower across a range of intraluminal pressures with long-term T2DM. Regional bone and marrow perfusion and vascular conductance, measured in vivo using radiolabeled microspheres, were lower in obese ZDF rats with long-term diabetes. These findings indicate that the profound impairment of the bone circulation may contribute to the osteopenia found to occur in long bones during chronic T2DM.


Journal of Applied Physiology | 2015

Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery.

Rhonda D. Prisby; Bradley J. Behnke; Matthew R. Allen; Michael D. Delp

Spaceflight and prolonged bed rest induce deconditioning of the cardiovascular system and bone loss. Previous research has shown declines in femoral bone and marrow perfusion during unloading and with subsequent reloading in hindlimb-unloaded (HU) rats, an animal model of chronic disuse. We hypothesized that the attenuated bone and marrow perfusion may result from altered vasomotor properties of the bone resistance vasculature. Therefore, the purpose of this study was to determine the effects of unloading on the vasoconstrictor and vasodilator properties of the femoral principal nutrient artery (PNA), the main conduit for blood flow to the femur, in 2 wk HU and control (CON) rats. Vasoconstriction of the femoral PNA was assessed in vitro using norepinephrine, phenylephrine, clonidine, KCl, endothelin-1, arginine vasopressin, and myogenic responsiveness. Vasodilation through endothelium-dependent [acetylcholine, bradykinin, and flow-mediated dilation (FMD)] and endothelium-independent mechanisms [sodium nitroprusside (SNP) and adenosine] were also determined. Vasoconstrictor responsiveness of the PNA from HU rats was not enhanced through any of the mechanisms tested. Endothelium-dependent vasodilation to acetylcholine (CON, 86 ± 3%; HU, 48 ± 7% vasodilation) and FMD (CON, 61 ± 9%; HU, 11 ± 11% vasodilation) were attenuated in PNAs from HU rats, while responses to bradykinin were not different between groups. Endothelium-independent vasodilation to SNP and adenosine were not different between groups. These data indicate that unloading-induced decrements in bone and marrow perfusion and increases in vascular resistance are not the result of enhanced vasoconstrictor responsiveness of the bone resistance arteries but are associated with reductions in endothelium-dependent vasodilation.


Journal of Applied Physiology | 2016

Effects of Hindlimb Unloading and Ionizing Radiation on Skeletal Muscle Resistance Artery Vasodilation and Its Relation to Cancellous Bone in Mice

Rhonda D. Prisby; Joshua S. Alwood; Bradley J. Behnke; John N. Stabley; Danielle J. McCullough; Payal Ghosh; Ruth K. Globus; Michael D. Delp

Spaceflight has profound effects on vascular function as a result of weightlessness that may be further compounded by radiation exposure. The purpose of the present study was to assess the individual and combined effects of hindlimb unloading (HU) and radiation (Rad) on vasodilator responses in the skeletal muscle vasculature. Adult male C57BL/6J mice were randomized to one of four groups: control (Con), HU (tail suspension for 15 days), Rad (200 cGy of (137)Cs), and HU-Rad (15-day tail suspension and 200 cGy of (137)Cs). Endothelium-dependent vasodilation of gastrocnemius feed arteries was assessed in vitro using acetylcholine (ACh, 10(-9)-10(-4) M) and inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX). Endothelium-independent vasodilation was assessed using Dea-NONOate (10(-9)-10(-4) M). Endothelium-dependent and -independent vasodilator responses were impaired relative to Con responses in all treatment groups; however, there was no further impairment from the combination of treatments (HU-Rad) relative to that in the HU and Rad groups. The NOS-mediated contribution to endothelium-dependent vasodilation was depressed with HU and Rad. This impairment in NOS signaling may have been partially compensated for by an enhancement of PGI2-mediated dilation. Changes in endothelium-dependent vasodilation were also associated with decrements in trabecular bone volume in the proximal tibia metaphysis. These data demonstrate that the simulated space environment (i.e., radiation exposure and unloading of muscle and bone) significantly impairs skeletal muscle artery vasodilation, mediated through endothelium-dependent reductions in NOS signaling and decrements in vascular smooth muscle cell responsiveness to NO.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Influence of estradiol supplementation on neuropeptide Y neurotransmission in skeletal muscle arterioles of F344 rats

Kirk W. Evanson; Audrey J. Stone; Enoch Samraj; Tyler J Benson; Rhonda D. Prisby; Heidi A. Kluess

The effects of estradiol on neuropeptide Y (NPY) neurotransmission in skeletal muscle resistance vessels have not been described. The purpose of this study was to determine the effects of long-term estradiol supplementation on NPY overflow, degradation, and vasoconstriction in gastrocnemius first-order arterioles of adult female rats. Female rats (4 mo; n = 34) were ovariectomized (OVX) with a subset (n = 17) receiving an estradiol pellet (OVE; 17β-estradiol, 4 μg/day). After conclusion of the treatment phase (8 wk), arterioles were excised, placed in a physiological saline solution (PSS) bath, and cannulated with micropipettes connected to albumin reservoirs. NPY-mediated vasoconstriction via a Y(1)-agonist [Leu31Pro34]NPY decreased vessel diameter 44.54 ± 3.95% compared with baseline; however, there were no group differences in EC(50) (OVE: -8.75 ± 0.18; OVX: -8.63 ± 0.10 log M [Leu31Pro34]NPY) or slope (OVE: -1.11 ± 0.25; OVX: -1.65 ± 0.34% baseline/log M [Leu31Pro34]NPY). NPY did not potentiate norepinephrine-mediated vasoconstriction. NPY overflow experienced a slight increase following field stimulation and significantly increased (P < 0.05) over control conditions in the presence of a DPPIV inhibitor (diprotin A). Estradiol status did not affect DPPIV activity. These data suggest that NPY can induce a moderate decrease in vessel diameter in skeletal muscle first-order arterioles, and DPPIV is active in mitigating NPY overflow in young adult female rats. Long-term estradiol supplementation did not influence NPY vasoconstriction, overflow, or its enzymatic breakdown in skeletal muscle first-order arterioles.


Poultry Science | 2014

Kinetic examination of femoral bone modeling in broilers

Rhonda D. Prisby; Thomas Menezes; Jeremiah Campbell; Tyler J Benson; Enoch Samraj; I. Y. Pevzner; R. F. Wideman

Lameness in broilers can be associated with progressive degeneration of the femoral head leading to femoral head necrosis and osteomyelitis. Femora from clinically healthy broilers were dissected at 7 (n = 35, 2), 14 (n = 32), 21 (n = 33), 28 (n = 34), and 42 (n = 28) d of age, and were processed for bone histomorphometry to examine bone microarchitecture and bone static and dynamic properties in the secondary spongiosa (IISP) of the proximal femoral metaphysis. Body mass increased rapidly with age, whereas the bone volume to tissue volume ratio remained relatively consistent. The bone volume to tissue volume ratio values generally reflected corresponding values for both mean trabecular thickness and mean trabecular number. Bone metabolism was highest on d 7 when significant osteoblast activity was reflected by increased osteoid surface to bone surface and mineralizing surface per bone surface ratios. However, significant declines in osteoblast activity and bone formative processes occurred during the second week of development, such that newly formed but unmineralized bone tissue (osteoid) and the percentages of mineralizing surfaces both were diminished. Osteoclast activity was elevated to the extent that measurement was impossible. Intense osteoclast activity presumably reflects marked bone resorption throughout the experiment. The overall mature trabecular bone volume remained relatively low, which may arise from extensive persistence of chondrocyte columns in the metaphysis, large areas in the metaphysis composed of immature bone, destruction of bone tissue in the primary spongiosa, and potentially reduced bone blood vessel penetration that normally would be necessary for robust development. Delayed bone development in the IISP was attributable to an uncoupling of osteoblast and osteoclast activity, whereby bone resorption (osteoclast activity) outpaced bone formation (osteoblast activity). Insufficient maturation and mineralization of the IISP may contribute to subsequent pathology of the femoral head in fast-growing broilers.


Journal of Applied Physiology | 2017

Intermittent parathyroid hormone administration attenuates endothelial dysfunction in old rats

John J. Guers; Rhonda D. Prisby; David G. Edwards; Shannon Lennon-Edwards

Aging is an independent risk factor for cardiovascular disease and is characterized by a decline in endothelial function. Parathyroid hormone (PTH) administration has been shown to increase endothelial nitric oxide synthase (eNOS) expression. The purpose of this investigation was to determine the effect of intermittent PTH administration on aortic endothelial function in old rodents. We hypothesized that intermittent PTH administration would improve endothelial function in older rodents. Old (24-mo-old) and young (4-mo-old) Fischer-344 rats were given 10 injections of PTH 1-34 (43 μg·kg-1·day-1) or phosphate-buffered saline (100 μl/day) over 15 days. Endothelium-dependent relaxation of aortic rings in response to acetylcholine (10-9 to 10-5 M) was significantly impaired in old control (OC) compared with young control (YC) as indicated by a reduced area under the curve (AUC, 100 ± 6.28 vs. 54.08 ± 8.3%; P < 0.05) and impaired maximal relaxation (Emax, 70.1 ± 4.48 vs. 92.9 ± 4.38%; P < 0.05). Emax was improved in old animals treated with PTH (OPTH) (OC, 70.1 ± 4.48 vs. OPTH, 85 ± 7.48%; P < 0.05) as well as AUC (OC, 54.08 ± 8.3 vs. OPTH, 82.5 ± 5.7%; P < 0.05) while logEC50 was not different. Endothelial-independent relaxation in response to sodium nitroprusside was not different among groups. Aortic eNOS protein expression was significantly decreased in OC compared with YC (P < 0.05). PTH treatment restored eNOS expression in OPTH animals (P < 0.05). These data suggest that PTH may play a role in attenuating age-related impairments in aortic endothelial function. NEW & NOTEWORTHY We have demonstrated that intermittent parathyroid hormone administration can rescue age-related vascular dysfunction by improving endothelial-dependent dilation in the aorta of older rodents. This demonstrates a novel potential benefit of parathyroid hormone administration in aging.

Collaboration


Dive into the Rhonda D. Prisby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John N. Stabley

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tyler J Benson

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge