Rhonda Geoffrey
Children's Hospital of Wisconsin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rhonda Geoffrey.
The New England Journal of Medicine | 2009
Sreelatha T. Reddy; Shuang Jia; Rhonda Geoffrey; Rachel Lorier; Mariko Suchi; Ulrich Broeckel; Martin J. Hessner; James W. Verbsky
We describe a patient with an autoinflammatory disease in which the main clinical features are pustular rash, marked osteopenia, lytic bone lesions, respiratory insufficiency, and thrombosis. Genetic studies revealed a 175-kb homozygous deletion at chromosome 2q13, which encompasses several interleukin-1 family members, including the gene encoding the interleukin-1-receptor antagonist (IL1RN). Mononuclear cells, obtained from the patient and cultured, produced large amounts of inflammatory cytokines, with increasing amounts secreted after stimulation with lipopolysaccharide. A similar increase was not observed in peripheral-blood mononuclear cells from a patient with neonatal-onset multisystem inflammatory disorder (NOMID). Treatment with anakinra completely resolved the symptoms and lesions.
Journal of Immunology | 2008
Xujing Wang; Shuang Jia; Rhonda Geoffrey; Ramin Alemzadeh; Soumitra Ghosh; Martin J. Hessner
Understanding active proinflammatory mechanisms at and before type 1 diabetes mellitus (T1DM) onset is hindered in humans, given that the relevant tissues are inaccessible and pancreatic immune responses are difficult to measure in the periphery by traditional approaches. Therefore, we investigated the use of a sensitive and comprehensive genomics strategy to investigate the presence of proinflammatory factors in serum. The sera of recent onset diabetes patients (n = 15, 12 possessing and 3 lacking islet cell autoantibodies), long-standing diabetes patients (n = 12), “at risk” siblings of diabetes patients (n = 9), and healthy controls (n = 12) were used to induce gene expression in unrelated, healthy PBMC. After culture, gene expression was measured with microarrays and normalized expression data were subjected to hierarchical clustering and multidimensional scaling. All recent onset sera induced an expression signature (192 UniGenes; fold change: >1.5, p < 0.01; false discovery rate: <0.01) that included IL-1 cytokine family members and chemokines involved in monocyte/macrophage and neutrophil chemotaxis, as well as numerous receptors and signaling molecules. This molecular signature was not induced with the sera of healthy controls or long standing diabetes patients, where longitudinal analysis of “at risk” siblings (n = 3) before and after onset support the hypothesis that the signature emerges years before onset. This study supports prior investigations of serum that reflect disease processes associated with progression to T1DM. Identification of unique inflammatory mediators may improve disease prediction beyond current islet autoantibodies. Furthermore, proinflammatory serum markers may be used as inclusion criteria or endpoint measures in clinical trials aimed at preventing T1DM.
Journal of Immunology | 2006
Rhonda Geoffrey; Shuang Jia; Anne E. Kwitek; Jeffrey E. Woodliff; Soumitra Ghosh; Åke Lernmark; Xujing Wang; Martin J. Hessner
Human type 1 diabetes mellitus (T1DM) arises through autoimmune destruction of pancreatic β cells and is modeled in many respects by the lymphopenic and spontaneously diabetic BioBreeding (BB) DRlyp/lyp rat. Previously, preonset expression profiling of whole DRlyp/lyp pancreatic lymph nodes (PLN) revealed innate immune activity, specifically that of mast cells and eosinophils. Furthermore, we observed that pancreatic islets of DRlyp/lyp rats as well as those of diabetes-inducible BB DR+/+ rats potentially recruit innate cells through eotaxin expression. Here we determine that lifelong eotaxin expression begins before 40 days of life and is localized specifically to β cells. In this report, we find that PLN mast cells are more abundant in DRlyp/lyp compared with related BB DR+/+ rats (2.1 ± 0.9% vs 0.9 ± 0.4% of total cells, p < 0.0001). DRlyp/lyp PLN mast cell gene expression profiling revealed an activated population and included significant overrepresentation of transcripts for mast cell protease 1, cationic trypsinogen, carboxypeptidase A, IL-5, and phospholipase Cγ. In the DR+/+ rat, which develops T1DM upon depletion of T regulator cells, mast cells displayed gene expression consistent with the negative regulation of degranulation, including significant overrepresentation of transcripts encoding tyrosine phosphatase SHP-1, lipid phosphatase SHIP, and E3 ubiquitin ligase c-Cbl. To recapitulate the negative mast cell regulation observed in the DR+/+ rats, we treated DRlyp/lyp rats with the mast cell “stabilizer” cromolyn, which significantly (p < 0.05) delayed T1DM onset. These findings are consistent with a growing body of evidence in human and animal models, where a role for mast cells in the initiation and progression of autoimmune disease is emerging.
Journal of Immunology | 2004
Martin J. Hessner; Xujing Wang; Lisa Meyer; Rhonda Geoffrey; Shuang Jia; Jessica M. Fuller; Åke Lernmark; Soumitra Ghosh
Allergy and autoimmunity are both examples of deregulated immunity characterized by inflammation and injury of targeted tissues that have until recently been considered disparate disease processes. However, recent findings have implicated mast cells, in coordination with granulocytes and other immune effector cells, in the pathology of these two disorders. The BioBreeding (BB) DRlyp/lyp rat develops an autoimmune insulin-dependent diabetes similar to human type 1 diabetes mellitus (T1DM), whereas the BBDR+/+ rat does not. To better understand immune processes during development of T1DM, gene expression profiling at day (d) 40 (before insulitis) and d65 (before disease onset) was conducted on pancreatic lymph nodes of DRlyp/lyp, DR+/+, and Wistar-Furth (WF) rats. The eosinophil-recruiting chemokine, eotaxin, and the high-affinity IgE receptor (FcεRI) were up-regulated >5-fold in d65 DRlyp/lyp vs d65 DR+/+ pancreatic lymph nodes by microarray (p < 0.05) and quantitative RT-PCR studies (p < 0.05). DR+/+, WF, and d40 DRlyp/lyp animals possessed normal pancreatic histology; however, d65 DRlyp/lyp animals possessed eosinophilic insulitis. Therefore, immunohistochemistry for pancreatic eotaxin expression was conducted, revealing positive staining of d65 DRlyp/lyp islets. Islets of d65 DR+/+ rats also stained positively, consistent with underlying diabetic predisposition in the BB lineage, whereas WF islets did not. Other differentially expressed transcripts included those associated with eosinophils, mast cells, and lymphocytes. These data support an important role for these inflammatory mediators in BB rat T1DM and suggest that the lymphopenia due to the Ian5/(lyp) mutation may result in a deregulation of cells involved in insulitis and β cell destruction.
Diabetes | 2014
Yi-Guang Chen; Susanne M. Cabrera; Shuang Jia; Mary L. Kaldunski; Joanna Kramer; Sami Cheong; Rhonda Geoffrey; Mark F. Roethle; Jeffrey E. Woodliff; Carla J. Greenbaum; Xujing Wang; Martin J. Hessner
Mechanisms associated with type 1 diabetes (T1D) development remain incompletely defined. Using a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially interleukin (IL)-1−dependent signatures associated with preonset and recent onset (RO) T1D relative to unrelated healthy control subjects (uHC). To better understand inherited susceptibility in T1D families, we conducted cross-sectional and longitudinal analyses of healthy autoantibody-negative (AA−) high HLA−risk siblings (HRS) (DR3 and/or DR4) and AA− low HLA−risk siblings (LRS) (non-DR3/non-DR4). Signatures, scored with a novel ontology-based algorithm, and confirmatory studies differentiated the RO T1D, uHC, HRS, and LRS plasma milieus. Relative to uHC, T1D family members exhibited an elevated inflammatory state, consistent with innate receptor ligation that was independent of HLA, AA, or disease status and included elevated plasma IL-1α, IL-12p40, CCL2, CCL3, and CCL4 levels. Longitudinally, signatures of T1D progressors exhibited increasing inflammatory bias. Conversely, HRS possessing decreasing AA titers revealed emergence of an IL-10/transforming growth factor-β−mediated regulatory state that paralleled temporal increases in peripheral activated CD4+/CD45RA−/FoxP3high regulatory T-cell frequencies. In AA− HRS, the familial innate inflammatory state also was temporally supplanted by immunoregulatory processes, suggesting a mechanism underlying the decline in T1D susceptibility with age.
Diabetes | 2010
Mary L. Kaldunski; Shuang Jia; Rhonda Geoffrey; Joel Basken; Simon Prosser; Sanjay Kansra; John P. Mordes; Åke Lernmark; Xujing Wang; Martin J. Hessner
OBJECTIVE Inflammatory mediators associated with type 1 diabetes are dilute and difficult to measure in the periphery, necessitating development of more sensitive and informative biomarkers for studying diabetogenic mechanisms, assessing preonset risk, and monitoring therapeutic interventions. RESEARCH DESIGN AND METHODS We previously utilized a novel bioassay in which human type 1 diabetes sera were used to induce a disease-specific transcriptional signature in unrelated, healthy peripheral blood mononuclear cells (PBMCs). Here, we apply this strategy to investigate the inflammatory state associated with type 1 diabetes in biobreeding (BB) rats. RESULTS Consistent with their common susceptibility, sera of both spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ rats induced transcription of cytokines, immune receptors, and signaling molecules in PBMCs of healthy donor rats compared with control sera. Like the human type 1 diabetes signature, the DRlyp/lyp signature, which is associated with progression to diabetes, was differentiated from that of the DR+/+ by induction of many interleukin (IL)-1–regulated genes. Supplementing cultures with an IL-1 receptor antagonist (IL-1Ra) modulated the DRlyp/lyp signature (P < 10−6), while administration of IL-1Ra to DRlyp/lyp rats delayed onset (P = 0.007), and sera of treated animals did not induce the characteristic signature. Consistent with the presence of immunoregulatory cells in DR+/+ rats was induction of a signature possessing negative regulators of transcription and inflammation. CONCLUSIONS Paralleling our human studies, serum signatures in BB rats reflect processes associated with progression to type 1 diabetes. Furthermore, these studies support the potential utility of this approach to detect changes in the inflammatory state during therapeutic intervention.
Physiological Genomics | 2011
Shuang Jia; Mary L. Kaldunski; Parthav Jailwala; Rhonda Geoffrey; Joanna Kramer; Xujing Wang; Martin J. Hessner
Inflammation is common to many disorders and responsible for tissue and organ damage. In many disorders, the associated peripheral cytokine milieu is dilute and difficult to measure, necessitating development of more sensitive and informative biomarkers for mechanistic studies, earlier diagnosis, and monitoring therapeutic interventions. Previously, we have shown that plasma of recent-onset (RO) Type 1 diabetes patients induces a disease-specific proinflammatory transcriptional profile in fresh peripheral blood mononuclear cells (PBMC) compared with that of healthy controls (HC). To eliminate assay variance introduced through the use of multiple donors or multiple draws of the same person over time, we evaluated human leukemia cell lines as potential surrogates for fresh PBMC. We 1) tested seven different cell lines in their power to differentiate RO from HC plasma and 2) compared the similarity of the signatures generated across the seven cell lines to that obtained with fresh PBMC. While each cell line tested exhibited a distinct transcriptional response when cultured with RO or HC plasma, the expression profile induced in any single cell line shared little identity with that of the other cell lines or fresh PBMC. In terms of regulated biological pathways, the transcriptional response of each cell line shared varying degrees of functional identity with fresh PBMC. These results indicate that use of human leukemia cell lines as surrogates for fresh PBMC has potential in detecting perturbations to the peripheral cytokine milieu. However, the response of each is distinct, possessing varying degrees of functional relatedness to that observed with PBMC.
Genes and Immunity | 2013
Yi-Guang Chen; John P. Mordes; Elizabeth P. Blankenhorn; Himala Kashmiri; Mary L. Kaldunski; Shuang Jia; Rhonda Geoffrey; Xujing Wang; Martin J. Hessner
The dilute plasma cytokine milieu associated with type 1 diabetes (T1D), while difficult to measure directly, is sufficient to drive transcription in a bioassay that uses healthy leukocytes as reporters. Previously, we reported disease-associated, partially IL-1 dependent, transcriptional signatures in both T1D patients and the BioBreeding (BB) rat model. Here, we examine temporal signatures in congenic BBDR.lyp/lyp rats that develop spontaneous T1D, and BBDR rats where T1D progresses only after immunological perturbation in young animals. After weaning, the BBDR temporal signature showed early coincident induction of transcription related to innate inflammation as well as IL-10- and TGF-β-mediated regulation. BBDR plasma cytokine levels mirrored the signatures showing early inflammation, followed by induction of a regulated state that correlated with failure of virus to induce T1D in older rats. In contrast, the BBDR.lyp/lyp temporal signature exhibited asynchronous dynamics, with delayed induction of inflammatory transcription and later, weaker induction of regulatory transcription, consistent with their deficiency in regulatory T cells. Through longitudinal analyses of plasma-induced signatures in BB rats and a human T1D progressor, we have identified changes in immunoregulatory processes that attenuate a preexisting innate inflammatory state in BBDR rats, suggesting a mechanism underlying the decline in T1D susceptibility with age.
Journal of Endocrinology | 2013
Marika Bogdani; Angela M. Henschel; Sanjay Kansra; Jessica M. Fuller; Rhonda Geoffrey; Shuang Jia; Mary L. Kaldunski; Scott Pavletich; Simon Prosser; Yi-Guang Chen; Åke Lernmark; Martin J. Hessner
Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabetogenesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility.
PLOS ONE | 2018
Angela M. Henschel; Susanne M. Cabrera; Mary L. Kaldunski; Shuang Jia; Rhonda Geoffrey; Mark F. Roethle; Vy Lam; Yi-Guang Chen; Xujing Wang; Nita H. Salzman; Martin J. Hessner
Environmental changes associated with modern lifestyles may underlie the rising incidence of Type 1 diabetes (T1D). Our previous studies of T1D families and the BioBreeding (BB) rat model have identified a peripheral inflammatory state that is associated with diabetes susceptibility, consistent with pattern recognition receptor ligation, but is independent of disease progression. Here, compared to control strains, islets of spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ weanlings provided a standard cereal diet expressed a robust proinflammatory transcriptional program consistent with microbial antigen exposure that included numerous cytokines/chemokines. The dependence of this phenotype on diet and gastrointestinal microbiota was investigated by transitioning DR+/+ weanlings to a gluten-free hydrolyzed casein diet (HCD) or treating them with antibiotics to alter/reduce pattern recognition receptor ligand exposure. Bacterial 16S rRNA gene sequencing revealed that these treatments altered the ileal and cecal microbiota, increasing the Firmicutes:Bacteriodetes ratio and the relative abundances of lactobacilli and butyrate producing taxa. While these conditions did not normalize the inherent hyper-responsiveness of DR+/+ rat leukocytes to ex vivo TLR stimulation, they normalized plasma cytokine levels, plasma TLR4 activity levels, the proinflammatory islet transcriptome, and β-cell chemokine expression. In lymphopenic DRlyp/lyp rats, HCD reduced T1D incidence, and the introduction of gluten to this diet induced islet chemokine expression and abrogated protection from diabetes. Overall, these studies link BB rat islet-level immunocyte recruiting potential, as measured by β-cell chemokine expression, to a genetically controlled immune hyper-responsiveness and innate inflammatory state that can be modulated by diet and the intestinal microbiota.