Rhonda L. Ingram
Wake Forest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rhonda L. Ingram.
Journal of Anatomy | 2000
William E. Sonntag; Colleen D. Lynch; Phillip L. Thornton; Amir S. Khan; S. A. Bennett; Rhonda L. Ingram
Research studies clearly indicate that age‐related changes in cellular and tissue function are linked to decreases in the anabolic hormones, growth hormone and insulin‐like growth factor (IGF)‐1. Although there has been extensive research on the effects of these hormones on bone and muscle mass, their effect on cerebrovascular and brain ageing has received little attention. We have also observed that in response to moderate calorie restriction (a treatment that increases mean and maximal lifespan by 30–40%), age‐related decreases in growth hormone secretion are ameliorated (despite a decline in plasma levels of IGF‐1) suggesting that some of the effects of calorie restriction are mediated by modifying the regulation of the growth hormone/IGF‐1 axis. Recently, we have observed that microvascular density on the surface of the brain decreases with age and that these vascular changes are ameliorated by moderate calorie restriction. Analysis of cerebral blood flow paralleled the changes in vasculature in both groups. Administration of growth hormone for 28 d was also found to increase microvascular density in aged animals and further analysis indicated that the cerebral vasculature is an important paracrine source of IGF‐1 for the brain. In subsequent studies, administration of GHRH (to increase endogenous release of growth hormone) or direct administration of IGF‐1 was shown to reverse the age‐related decline in spatial working and reference memory. Similarly, antagonism of IGF‐1 action in the brains of young animals impaired both learning and reference memory. Investigation of the mechanisms of action of IGF‐1 suggested that this hormone regulates age‐related alterations in NMDA receptor subtypes (e.g. NMDAR2A and R2B). The beneficial role of growth hormone and IGF‐1 in ameliorating vascular and brain ageing are counterbalanced by their well‐recognised roles in age‐related pathogenesis. Although research in this area is still evolving, our results suggest that decreases in growth hormone and IGF‐1 with age have both beneficial and deleterious effects. Furthermore, part of the actions of moderate calorie restriction on tissue function and lifespan may be mediated through alterations in the growth hormone/IGF‐1 axis.
Brain Research Bulletin | 2000
William E. Sonntag; S. A. Bennett; Amir S. Khan; Phillip L. Thornton; Xiaowei Xu; Rhonda L. Ingram; Judy K. Brunso-Bechtold
N-Methyl-D-aspartate (NMDA) receptors have been reported to have an important role in synaptic plasticity and neurodegeneration. Two major subtypes of these receptors, NMDAR1 and NMDAR2, are present in brain and heterogeneity of these receptors have been reported to define specific functional responses. In this study, the effects of age and chronic insulin-like growth factor-1 (IGF-1) administration on NMDA receptor density and subtype expression were investigated in frontal cortex, CA1, CA2/3 and the dentate gyrus of the hippocampus of young (10 months), middle-aged (21 months) and old (30 months) male Fisher 344xBrown Norway (F1) rats. No age-related changes in (125)I-MK-801 binding or NMDAR1 protein expression were observed in hippocampus or frontal cortex. However, analysis of NMDAR2A and NMDAR2B protein expression in hippocampus indicated a significant decrease between 21 and 30 months of age and administration of IGF-1 increased these receptor subtypes. In cortex, NMDAR2A and NMDAR2B protein expression were not influenced by age or IGF-1 treatment, although NMDAR2C protein expression decreased with age and this decline was not ameliorated by IGF-1 administration. These data demonstrate that NMDA receptor subtypes are altered with age in a regional and subtype specific manner. We conclude that both age and IGF-1 regulate the expression of NMDA receptor subtypes and suggest that age-related changes in NMDA receptor heterogeneity may result in functional changes in the receptor that have relevance for aging.
Neuroscience | 1999
William E. Sonntag; Colleen D. Lynch; S. A. Bennett; Amir S. Khan; Phillip L. Thornton; Paula T. Cooney; Rhonda L. Ingram; T. McShane; Judy K. Brunso-Bechtold
Ageing in mammals is characterized by a decline in plasma levels of insulin-like growth factor-1 that appears to contribute to both structural and functional changes in a number of tissues. Although insulin-like growth factor-1 has been shown to provide trophic support for neurons and administration of insulin-like growth factor-1 to ageing animals reverses some aspects of brain ageing, age-related changes in insulin-like growth factor-1 or type 1 insulin-like growth factor receptors in brain have not been well documented. In this series of studies, insulin-like growth factor-1 messenger RNA and protein concentrations, and type 1 insulin-like growth factor receptor levels were analysed in young (three to four- and 10-12-month-old), middle-aged (19-20-month-old) and old (29-32-month-old) Fisher 344 x Brown Norway rats. Localization of insulin-like growth factor-1 messenger RNA throughout the lifespan revealed that expression was greatest in arteries, arterioles, and arteriolar anastomoses with greater than 80% of these vessels producing insulin-like growth factor-1 messenger RNA. High levels of expression were also noted in the meninges. No age-related changes were detected by either in situ hybridization or quantitative dot blot analysis of cortical tissue. However, analysis of insulin-like growth factor-1 protein levels in cortex analysed after saline perfusion indicated a 36.5% decrease between 11 and 32 months-of-age (P<0.05). Similarly, analysis of type 1 insulin-like growth factor receptor messenger RNA revealed no changes with age but levels of type 1 insulin-like growth factor receptors indicated a substantial decrease with age (31% in hippocampus and 20.8 and 27.3% in cortical layers II/III and V/VI, respectively). Our results indicate that (i) vasculature and meninges are an important source of insulin-like growth factor-1 for the brain and that expression continues throughout life, (ii) there are no changes in insulin-like growth factor-1 gene expression with age but insulin-like growth factor-1 protein levels decrease suggesting that translational deficiencies or deficits in the transport of insulin-like growth factor-1 through the blood-brain barrier contribute to the decline in brain insulin-like growth factor-1 with age, and (iii) type 1 insulin-like growth factor receptor messenger RNA is unchanged with age but type 1 insulin-like growth factor receptors decrease in several brain regions. We conclude that significant perturbations occur in the insulin-like growth factor-1 axis with age. Since other studies suggest that i.c.v. administration of insulin-like growth factor-1 reverses functional and cognitive deficiencies with age, alterations within the insulin-like growth factor-1 axis may be an important contributing factor in brain ageing.
Neuroendocrinology | 1995
William E. Sonntag; Xiaowei Xu; Rhonda L. Ingram; A. D'costa
Although growth hormone secretion decreases with age in both animals and man, its potential role in the regulation of biological aging is unknown. In a series of experiments, age-related changes in growth hormone secretory dynamics were compared in ad libitum fed and moderately calorically restricted male Brown-Norway rats. These animals exhibit an increase in both mean and maximal lifespan in response to caloric restriction. In addition, the subcellular distribution of somatostatin mRNA was compared since previous data indicated that somatostatin secretion increases with age and has an important role in the age-related decline in growth hormone pulse amplitude. In ad libitum fed animals, growth hormone secretory dynamics decreased with age and were associated with a decline in total somatostatin mRNA levels. However, analysis of somatostatin mRNA precipitating with polyribosomes revealed a significant increase with age (p < 0.05). When data were expressed as polysomal/total mRNA, levels in 25-month-old animals increased 94 and 104% compared to 6- or 16-month-old animals, respectively (p < 0.01). Growth hormone secretory dynamics decreased in young animals maintained on a moderate caloric restricted diet, but by 26 months growth hormone pulse amplitude increased and was indistinguishable from young ad libitum fed animals. In addition, the moderate caloric-restricted animals failed to exhibit the decline in total somatostatin mRNA or the increase in polyribosome-associated somatostatin mRNA characteristic of the ad libitum fed 25-month-old animals. Our results suggest that altered regulation of somatostatin mRNA at the translational level may be a contributing factor in the decrease in growth hormone secretion observed in aging animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Mechanisms of Ageing and Development | 1993
Anselm P. D'Costa; John E. Lenham; Rhonda L. Ingram; William E. Sonntag
Insulin-like growth factor-1 (IGF-1) is an anabolic hormone that mediates the actions of growth hormone (GH) and is found at lower concentrations in aged animals. These decreases in GH and IGF-1 appear to have important physiological consequences for aging, since protein synthesis decreases with age, and administration of GH and/or IGF-1 has been shown to increase protein synthesis. The present study was designed to determine (a) the relationship between the age-related changes in rates of tissue protein synthesis and plasma IGF-1 concentrations, (b) type 1 IGF receptor density in tissues and (c) whether long-term moderate caloric restriction, which is known to increase life-span, affects these relationships. Male Brown Norway rats were fed ad libitum or caloric-restricted (60% ad libitum) from 14 weeks of age and sacrificed at different ages. In ad libitum fed animals there were age-related decreases in plasma IGF-1 concentrations (14%) and in the rates of protein synthesis of the heart (36%) and liver (38%). Type 1 IGF receptor density remained constant in all tissues with age. The caloric-restricted animals exhibited plasma IGF-1 concentrations 33 to 42% lower than the ad libitum fed animals. However, rates of protein synthesis increased by 70 and 30% in heart and diaphragm, and this increase was associated with 60 to 100% increases in type 1 IGF receptor densities when compared with ad libitum fed animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Neurobiology of Aging | 1999
Colleen D. Lynch; Paula T. Cooney; S. A. Bennett; Phillip L. Thornton; Amir S. Khan; Rhonda L. Ingram; William E. Sonntag
The present study was designed to assess the impact of moderate caloric restriction (60% of ad libitum fed animals) on cerebral vascular density and local cerebral blood flow. Vascular density was assessed in male Brown-Norway rats from 7-35 months of age using a cranial window technique. Arteriolar density, arteriole-arteriole anastomoses, and venular density decreased with age and these effects were attenuated by moderate caloric restriction. Analysis of local cerebral blood using [14C]iodoantipyrine indicated that basal blood flow decreased with age in CA1, CA3 and dentate gyrus of hippocampus; similar trends were evident in cingulate, retrosplenal, and motor cortex. Basal blood flow was increased in all brain regions of moderate caloric restricted old animals (compared to old ad libitum fed animals) and no differences were observed between ad libitum fed young and caloric restricted older animals. In response to a CO2 challenge to maximally dilate vessels, blood flow increased in young and old ad libitum fed animals, but a similar increase was not observed in caloric restricted old animals. We conclude that a decrease in cerebral vasculature is an important contributing factor in the reduction in blood flow with age. Nevertheless, vessels from young and old animals have the capacity to dilate in response to a CO2 challenge and, after CO2, no differences are observed between the two age-groups. These results are consistent with the hypothesis that aged animals fail to adequately regulate local cerebral blood flow in response to physiological stimuli. Moderate caloric restriction increases microvascular density and cerebral blood flow in aged animals but tissues exhibit little or no increase in blood flow in response to CO2 challenge. The cause of this deficient response may indicate that vessels are maximally dilated in aged calorically restricted animals or that they fail to exhibit normal regulatory control.
Neuroscience | 1995
Anselm P. D'Costa; Xiaowei Xu; Rhonda L. Ingram; William E. Sonntag
It has been postulated that brain aging and the accompanying neurodegenerative processes associated with aging result from a deterioration of mechanisms that regulate the maintenance of basic cellular processes. In the present study, it was hypothesized that decreased availability and/or diminished responsiveness of tissues to growth factors such as insulin-like growth factor-1 may be partly responsible for decreases in total protein synthesis previously observed in aging animals. Male Brown Norway rats (5-7 and 27-28 months old) were used to determine (1) whether in vivo protein synthesis in cortex, hippocampus, hypothalamus and cerebellum decreases with age and (2) whether these deficiencies are associated with age-related alterations in response to insulin-like growth factor-1, des (1-3) IGF-1 or insulin. Analysis of in vivo protein synthesis rates revealed a decline of 20% in cortex of old rats (P < 0.05) but no changes were observed in hippocampus, hypothalamus, or cerebellum. Stimulation of cortical slices in vitro with insulin-like growth factor-1, des (1-3) insulin-like growth factor-1, or insulin increased protein synthesis rates in young animals, but the response to these growth factors was blunted in old animals. Analysis of type 1 insulin-like growth factor receptor densities by quantitative autoradiography demonstrated age-related decreases in receptor levels in cerebellar cortex and dentate gyrus of the hippocampus but no changes in cortex. Regional distribution of type 1 insulin-like growth factor receptors within each of these tissues did not appear to change with age.(ABSTRACT TRUNCATED AT 250 WORDS)
Brain Research | 1998
M.M Niblock; Judy K. Brunso-Bechtold; Colleen D. Lynch; Rhonda L. Ingram; T McShane; William E. Sonntag
Previous studies have reported changes in insulin-like growth factor I (IGF-I) mRNA expression during early postnatal development of the rat brain. Although changes in IGF-I gene expression have been documented in a wide range of central nervous system structures during early development and investigated in the hippocampus during aging, no study has compared changes in IGF-I gene expression in different brain regions across the life span. The present study assessed the distribution of IGF-I gene expression using in situ hybridization in rats aged 2-30 months. Dot blots were used as a quantitative assessment of cortical IGF-I mRNA. Results indicate that both the distribution and levels of brain IGF-I mRNA do not change significantly between 2 and 30 months of age in the rat. However, in spite of relatively constant levels of mRNA, other studies from our laboratory have demonstrated that cortical IGF-I protein levels decrease 36.6% between 11 and 32 months of age, suggesting that IGF-I function is decreased with increasing age.
The Journals of Gerontology | 1991
Charles R. Breese; Rhonda L. Ingram; William E. Sonntag
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 1999
William E. Sonntag; Colleen D. Lynch; William T. Cefalu; Rhonda L. Ingram; S. A. Bennett; Phillip L. Thornton; Amir S. Khan