Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rhys Grinter is active.

Publication


Featured researches published by Rhys Grinter.


PLOS ONE | 2012

Ferredoxin Containing Bacteriocins Suggest a Novel Mechanism of Iron Uptake in Pectobacterium spp

Rhys Grinter; Joel J. Milner; Daniel Walker

In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium Pectobacterium carotovorum carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of Pectobacterium carotovorum and Pectobacterium atrosepticum with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that Pectobacterium spp. carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of Pectobacterium carotovorum and atrosepticum that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells.


PLOS Pathogens | 2014

Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

Laura C. McCaughey; Rhys Grinter; Inokentijs Josts; Aleksander W. Roszak; Kai I. Waløen; Richard J. Cogdell; Joel J. Milner; Thomas J. Evans; Sharon M. Kelly; Nicholas P. Tucker; Olwyn Byron; Brian O. Smith; Daniel Walker

Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins.


Journal of Biological Chemistry | 2012

The crystal structure of the lipid II-degrading bacteriocin syringacin M suggests unexpected evolutionary relationships between colicin M-like bacteriocins

Rhys Grinter; Aleksander W. Roszak; Richard J. Cogdell; Joel J. Milner; Daniel Walker

Background: Syringacin M is a colicin M-like bacteriocin from the plant-pathogenic species Pseudomonas syringae. Results: The receptor binding domain of syringacin M has unexpected structural homology to that of colicin M. Conclusion: Syringacin M and colicin M appear to have evolved directly from a common ancestor. Significance: Bacteriocins can evolve novel receptor specificities through diversifying selection. Colicin-like bacteriocins show potential as next generation antibiotics with clinical and agricultural applications. Key to these potential applications is their high potency and species specificity that enables a single pathogenic species to be targeted with minimal disturbance of the wider microbial community. Here we present the structure and function of the colicin M-like bacteriocin, syringacin M from Pseudomonas syringae pv. tomato DC3000. Syringacin M kills susceptible cells through a highly specific phosphatase activity that targets lipid II, ultimately inhibiting peptidoglycan synthesis. Comparison of the structures of syringacin M and colicin M reveals that, in addition to the expected similarity between the homologous C-terminal catalytic domains, the receptor binding domains of these proteins, which share no discernible sequence homology, share a striking structural similarity. This indicates that the generation of the novel receptor binding and species specificities of these bacteriocins has been driven by diversifying selection rather than diversifying recombination as suggested previously. Additionally, the structure of syringacin M reveals the presence of an active site calcium ion that is coordinated by a conserved aspartic acid side chain and is essential for catalytic activity. We show that mutation of this residue to alanine inactivates syringacin M and that the metal ion is absent from the structure of the mutant protein. Consistent with the presence of Ca2+ in the active site, we show that syringacin M activity is supported by Ca2+, along with Mg2+ and Mn2+, and the protein is catalytically inactive in the absence of these ions.


PLOS Pathogens | 2016

A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence.

James P. R. Connolly; Mads Gabrielsen; Robert J. Goldstone; Rhys Grinter; Dai Wang; Richard J. Cogdell; Daniel Walker; David George Emslie Smith; Andrew J. Roe

The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC) in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to “sense” levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.


Journal of Molecular Biology | 2015

Structures of the Ultra-High-Affinity Protein-Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa

Amar Joshi; Rhys Grinter; Inokentijs Josts; Sabrina Chen; Justyna A. Wojdyla; Edward D. Lowe; Renata Kaminska; Connor Sharp; Laura C. McCaughey; Aleksander W. Roszak; Richard J. Cogdell; Olwyn Byron; Daniel Walker

How ultra-high-affinity protein–protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase–Im interaction is a model system for the study of high-affinity protein–protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase–Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase–ImS2 and pyocin AP41 DNase–ImAP41. These structures represent divergent DNase–Im subfamilies and are important in extending our understanding of protein–protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase–Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase–Immunity pairs that appear to underpin the split of this family into two distinct groups.


Genome Biology and Evolution | 2016

Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family

Eva Heinz; Christopher J. Stubenrauch; Rhys Grinter; Nathan P. Croft; Anthony W. Purcell; Richard A. Strugnell; Gordon Dougan; Trevor Lithgow

The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens.


Fems Microbiology Letters | 2013

Beware of proteins bearing gifts: protein antibiotics that use iron as a Trojan horse

Rhys Grinter; Joel J. Milner; Daniel Walker

Multicellular organisms limit the availability of free iron to prevent the utilization of this essential nutrient by microbial pathogens. As such, bacterial pathogens possess a variety of mechanisms for obtaining iron from their hosts, including a number of examples of vertebrate pathogens that obtain iron directly from host proteins. Recently, two novel members of the colicin M bacteriocin family were discovered in Pectobacterium that suggest that this phytopathogen possesses such a system. These bacteriocins (pectocin M1 and M2) consist of a cytotoxic domain homologous to that of colicin M fused to a horizontally acquired plant-like ferredoxin. This ferredoxin domain substitutes the portion of colicin M required for receptor binding and translocation, presumably fulfilling this role by parasitizing an existing ferredoxin-based iron acquisition pathway. The ability of susceptible strains of Pectobacterium to utilize plant ferredoxin as an iron source was also demonstrated, providing additional evidence for the existence of such a system. If this hypothesis is correct, it represents the first example of iron piracy directly from a host protein by a phytopathogen and serves as a testament of the flexibility of evolution in creating new bacteriocin specificities.


Biochemical Society Transactions | 2012

Bacteriocins active against plant pathogenic bacteria

Rhys Grinter; Joel J. Milner; Daniel Walker

Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.


Molecular Microbiology | 2014

Structure of the atypical bacteriocin pectocin M2 implies a novel mechanism of protein uptake.

Rhys Grinter; Inokentijs Josts; Kornelius Zeth; Aleksander W. Roszak; Laura C. McCaughey; Richard J. Cogdell; Joel J. Milner; Sharon M. Kelly; Olwyn Byron; Daniel Walker

The colicin‐like bacteriocins are potent protein antibiotics that have evolved to efficiently cross the outer membrane of Gram‐negative bacteria by parasitizing nutrient uptake systems. We have structurally characterized the colicin M‐like bacteriocin, pectocin M2, which is active against strains of Pectobacterium spp. This unusual bacteriocin lacks the intrinsically unstructured translocation domain that usually mediates translocation of these bacteriocins across the outer membrane, containing only a single globular ferredoxin domain connected to its cytotoxic domain by a flexible α‐helix, which allows it to adopt two distinct conformations in solution. The ferredoxin domain of pectocin M2 is homologous to plant ferredoxins and allows pectocin M2 to parasitize a system utilized by Pectobacterium to obtain iron during infection of plants. Furthermore, we identify a novel ferredoxin‐containing bacteriocin pectocin P, which possesses a cytotoxic domain homologous to lysozyme, illustrating that the ferredoxin domain acts as a generic delivery module for cytotoxic domains in Pectobacterium.


Nature Communications | 2016

Structure of the bacterial plant-ferredoxin receptor FusA.

Rhys Grinter; Inokentijs Josts; Khedidja Mosbahi; Aleksander W. Roszak; Richard J. Cogdell; Alexandre M. J. J. Bonvin; Joel J. Milner; Sharon M. Kelly; Olwyn Byron; Brian O. Smith; Daniel Walker

Iron is a limiting nutrient in bacterial infection putting it at the centre of an evolutionary arms race between host and pathogen. Gram-negative bacteria utilize TonB-dependent outer membrane receptors to obtain iron during infection. These receptors acquire iron either in concert with soluble iron-scavenging siderophores or through direct interaction and extraction from host proteins. Characterization of these receptors provides invaluable insight into pathogenesis. However, only a subset of virulence-related TonB-dependent receptors have been currently described. Here we report the discovery of FusA, a new class of TonB-dependent receptor, which is utilized by phytopathogenic Pectobacterium spp. to obtain iron from plant ferredoxin. Through the crystal structure of FusA we show that binding of ferredoxin occurs through specialized extracellular loops that form extensive interactions with ferredoxin. The function of FusA and the presence of homologues in clinically important pathogens suggests that small iron-containing proteins represent an iron source for bacterial pathogens.

Collaboration


Dive into the Rhys Grinter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge