Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricarda Thier is active.

Publication


Featured researches published by Ricarda Thier.


Current Drug Metabolism | 2006

Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology

H. M. Bolt; Ricarda Thier

Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.


Archives of Toxicology | 2000

Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma.

Christine Steinhoff; Knut H. Franke; Klaus Golka; Ricarda Thier; Hermann C. Römer; Claudia Rötzel; Rolf Ackermann; Wolfgang A. Schulz

Abstract. Genotype distributions for GSTP1, GSTM1, and GSTT1 were determined in 91 patients with prostatic carcinoma and 135 patients with bladder carcinoma and compared with those in 127 abdominal surgery patients without malignancies. None of the genotypes differed significantly with respect to age or sex among controls or cancer patients. In the group of prostatic carcinoma patients, GSTT1 null allele homozygotes were more prevalent (25% in carcinoma patients vs 13% in controls, Fisher P=0.02, χ2P=0.02, OR=2.31, CI=1.17–4.59) and the combined M1-/T1-null genotype was also more frequent (9% vs 3%, χ2P=0.02, Fisher P=0.03). Homozygosity for the GSTM1 null allele was more frequent among bladder carcinoma patients (59% in bladder carcinoma patients vs 45% in controls, Fisher P=0.03, χ2P=0.02, OR=1.76, CI=1.08–2.88). In contrast to a previous report, no significant increase in the frequency of the GSTP1b allele was found in the tumor patients. Except for the combined GSTM1-/T1-null genotype in prostatic carcinoma, none of the combined genotypes showed a significant association with either of the cancers. These findings suggest that specific single polymorphic GST genes, that is GSTM1 in the case of bladder cancer and GSTT1 in the case of prostatic carcinoma, are most relevant for the development of these urological malignancies among the general population in Central Europe.


Toxicology Letters | 2003

Interaction of metal salts with cytoskeletal motor protein systems.

Ricarda Thier; Daniela Bonacker; Thomas Stoiber; Konrad J. Böhm; Minsheng Wang; Eberhard Unger; H. M. Bolt; Gisela H. Degen

Interactions of chemicals with the microtubular network of cells may lead to genotoxicity. Micronuclei (MN) might be caused by interaction of metals with tubulin and/or kinesin. The genotoxic effects of inorganic lead and mercury salts were studied using the MN assay and the CREST analysis in V79 Chinese hamster fibroblasts. Effects on the functional activity of motor protein systems were examined by measurement of tubulin assembly and kinesin-driven motility. Lead and mercury salts induced MN dose-dependently. The no-effect-concentration for MN induction was 1.1 microM PbCl(2), 0.05 microM Pb(OAc)(2) and 0.01 microM HgCl(2). The in vitro results obtained for PbCl(2) correspond to reported MN induction in workers occupationally exposed to lead, starting at 1.2 microM Hg(II) (Vaglenov et al., 2001, Environ. Health Perspect. 109, 295-298). The CREST Analysis indicate aneugenic effects of Pb(II) and aneugenic and additionally clastogenic effects of Hg(II). Lead (chloride, acetate, and nitrate) and mercury (chloride and nitrate) interfered dose-dependently with tubulin assembly in vitro. The no-effect-concentration for lead salts in this assay was 10 microM. Inhibition of tubulin assembly by mercury started at 2 microM. The gliding velocity of microtubules along immobilised kinesin molecules was affected by 25 microM Pb(NO(3))(2) and 0.1 microM HgCl(2) in a dose-dependent manner. Our data support the hypothesis that lead and mercury genotoxicity may result, at least in part, via disturbance of chromosome segregation via interaction with cytoskeletal proteins.


Archives of Toxicology | 1997

Influence of polymorphisms of GSTM1 and GSTT1 for risk of renal cell cancer in workers with long-term high occupational exposure to trichloroethene

Thomas Brüning; Marga Lammert; Manuela Kempkes; Ricarda Thier; Klaus Golka; Hermann M. Bolt

Abstract Suspected nephrocarcinogenic effects of trichloroethene (TRI) in humans are attributed to metabolites derived from the glutathione transferase (GST) pathway. The influence of polymorphisms of GSTM1 and GSTT1 isoenzymes on the risk of renal cell cancer in subjects having been exposed to high levels of TRI over many years was investigated. GSTM1 and GSTT1 genotypes were determined by internal standard controlled polymerase chain reaction. Fourty-five cases with histologically verified renal cell cancer and a history of long-term occupational exposure to high concentrations of TRI were studied. A reference group consisted of 48 workers from the same geographical region with similar histories of occupational exposures to TRI but not suffering from any cancer. Among the 45 renal cell cancer patients, 27 carried at least one functional GSTM1 gene (GSTM1+) and 18 at least one functional GSTT1 gene (GSTT1+). Among the 48 reference workers, 17 were GSTM1+ and 31 were GSTT1+. Odds ratios for renal cell cancer were 2.7 for GSTM1+ individuals (95% CI, 1.18–6.33; P < 0.02) and 4.2 for GSTT1+ individuals (95% CI, 1.16–14.91; P < 0.05), respectively. The data support the present concept of the nephrocarcinogenicity of TRI.


Critical Reviews in Toxicology | 2000

Carcinogenicity and Genotoxicity of Ethylene Oxide: New Aspects and Recent Advances

Ricarda Thier; Hermann M. Bolt

ABSTRACT Long-term inhalation studies in rodents have presented unequivocal evidence of experimental carcinogenicity of ethylene oxide, based on the formation of malignant tumors at multiple sites. However, despite a considerable body of epidemiological data only limited evidence has been obtained of its carcinogenicity in humans. Ethylene oxide is not only an important exogenous toxicant, but it is also formed from ethylene as a biological precursor. Ethylene is a normal body constituent; its endogenous formation is evidenced by exhalation in rats and in humans. Consequently, ethylene oxide must also be regarded as a physiological compound. The most abundant DNA adduct of ethylene oxide is 7-(2-hydroxyethyl)guanine (HOEtG). Open questions are the nature and role of tissue-specific factors in ethylene oxide Carcinogenesis and the physiological and quantitative role of DNA repair mechanisms. The detection of remarkable individual differences in the susceptibility of humans has promoted research into genetic factors that influence the metabolism of ethylene oxide. With this background it appears that current PBPK models for trans-species extrapolation of ethylene oxide toxicity need to be refined further. For a cancer risk assessment at low levels of DNA damage, exposure-related adducts must be discussed in relation to background DNA damage as well as to inter-and intraindividual variability. In rats, subacute ethylene oxide exposures on the order of 1 ppm (1.83 mg/m3) cause DNA adduct levels (HOEtG) of the same magnitude as produced by endogenous ethylene oxide. Based on very recent studies the endogenous background levels of HOEtG in DNA of humans are comparable to those that are produced in rodents by repetitive exogenous ethylene oxide exposures of about 10 ppm (18.3 mg/m3), Experimentally, ethylene oxide has revealed only weak mutagenic effects in vivo, which are confined to higher doses. It has been concluded that long-term human occupational exposure to low airborne concentrations to ethylene oxide, at or below current occupational exposure limits of 1 ppm (1.83 mg/m3), would not produce unacceptable increased genotoxic risks. However, critical questions remain that need further discussions relating to the coherence of animal and human data of experimental data in vitro vs. in vivo and to species-specific dynamics of DNA lesions.


Archives of Toxicology | 2002

Cytochrome P450 1B1, a new keystone in gene–environment interactions related to human head and neck cancer?

Ricarda Thier; Thomas Brüning; Peter H. Roos; Hermann M. Bolt

Abstract. Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.


Journal of Environmental Monitoring | 2007

Combining passive sampling and toxicity testing for evaluation of mixtures of polar organic chemicals in sewage treatment plant effluent

R. Muller; Janet Tang; Ricarda Thier; Jochen F. Mueller

Effluent from sewage treatment plants has been associated with a range of pollutant effects. Depending on the influent composition and treatment processes the effluent may contain a myriad of different chemicals which makes monitoring very complex. In this study we aimed to monitor relatively polar organic pollutant mixtures using a combination of passive sampling techniques and a set of biochemistry based assays covering acute bacterial toxicity (Microtox), phytotoxicity (Max-I-PAM assay) and genotoxicity (umuC assay). The study showed that all of the assays were able to detect effects in the samples and allowed a comparison of the two plants as well as a comparison between the two sampling periods. Distinct improvements in water quality were observed in one of the plants as result of an upgrade to a UV disinfection system, which improved from 24x sample enrichment required to induce a 50% response in the Microtox assay to 84x, from 30x sample enrichment to induce a 50% reduction in photosynthetic yield to 125x, and the genotoxicity observed in the first sampling period was eliminated. Thus we propose that biochemical assay techniques in combination with time integrated passive sampling can substantially contribute to the monitoring of polar organic toxicants in STP effluents.


Archives of Toxicology | 1999

Haemoglobin adducts of acrylonitrile and ethylene oxide in acrylonitrile workers, dependent on polymorphisms of the glutathione transferases GSTT1 and GSTM1.

Ricarda Thier; Jürgen Lewalter; Manuela Kempkes; Silvia Selinski; Thomas Brüning; Hermann M. Bolt

Abstract Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N-(methyl)valine, MV; N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 μg CEV/l blood; 6.7 and 6.7 μg MV/l blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1− individuals compared to GSTT1+ persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST− individuals displayed adduct levels that were about 1/3 higher than those of GSTT1+ individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1− and GSTT1+ persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1− persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.


Archives of Toxicology | 1998

Glutathione transferase T1 and M1 genotype polymorphism in the normal population of Shanghai

Jian-hua Shen; Goufang Lin; Wuxing Yuan; Jingwei Tan; Hermann M. Bolt; Ricarda Thier

Abstract Glutathione transferases are known to be important enzymes in the metabolism of xenobiotics. In humans genetic polymorphisms have been reported for the hGSTM1 and hGSTT1 genes leading to individual differences in susceptibility towards toxic effects, such as cancer. This study describes the distribution of the two polymorphisms of hGSTT1 and hGSTM1 in the normal Chinese population of Shanghai. Out of 219 healthy individuals having been genotyped for GSTT1 and GSTM1, 108 (49%) were identified to be homozygously deficient for the GSTT1 gene and 107 (49%) for the GSTM1 gene.


Toxicology Letters | 2002

Genetic susceptibility to environmental toxicants: the interface between human and experimental studies in the development of new toxicological concepts

Ricarda Thier; Klaus Golka; Thomas Brüning; Yon Ko; Hermann M. Bolt

The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.

Collaboration


Dive into the Ricarda Thier's collaboration.

Top Co-Authors

Avatar

Hermann M. Bolt

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. M. Bolt

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Klaus Golka

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Brian Ketterer

Courtauld Institute of Art

View shared research outputs
Top Co-Authors

Avatar

Frederike A. Wiebel

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Gisela H. Degen

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Bonacker

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge