Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo Arevalo is active.

Publication


Featured researches published by Ricardo Arevalo.


Journal of Geophysical Research | 2014

Abundances and implications of volatile‐bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

P. D. Archer; Heather B. Franz; Brad Sutter; Ricardo Arevalo; Patrice Coll; Jennifer L. Eigenbrode; Daniel P. Glavin; John Jones; Laurie A. Leshin; Paul R. Mahaffy; A. C. McAdam; Christopher P. McKay; Douglas W. Ming; Richard V. Morris; Rafael Navarro-González; Paul B. Niles; Alex Pavlov; Steven W. Squyres; Jennifer C. Stern; Andrew Steele; James J. Wray

The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.


International Journal of Astrobiology | 2016

MOMA: The Challenge to Search for Organics and Biosignatures on Mars

W. Goetz; William B. Brinckerhoff; Ricardo Arevalo; Caroline Freissinet; Stephanie A. Getty; D. P. Glavin; Sandra Siljeström; Arnaud Buch; Fabien Stalport; A. Grubisic; Xiang Li; V. Pinnick; Ryan M. Danell; F. H. W. Van Amerom; Fred Goesmann; Harald Steininger; Noël Grand; F. Raulin; Cyril Szopa; Uwe J. Meierhenrich; John Robert Brucato

This paper describes strategies to search for, detect, and identify organic material on the surface and subsurface of Mars. The strategies described include those applied by landed missions in the past and those that will be applied in the future. The value and role of ESAs ExoMars rover and of her key science instrument Mars Organic Molecule Analyzer (MOMA) are critically assessed.


ieee aerospace conference | 2013

Mars Organic Molecule Analyzer (MOMA) mass spectrometer for ExoMars 2018 and beyond

William B. Brinckerhoff; Veronica T. Pinnick; Friso H. W. van Amerom; Ryan M. Danell; Ricardo Arevalo; Martina S. Atanassova; Xiang Li; Paul R. Mahaffy; Robert J. Cotter; Fred Goesmann; Harald Steininger

The 2018 joint ESA-Roscosmos ExoMars rover mission will seek the signs of past or present life in the near-surface environment of Mars. The rover will obtain samples from as deep as two meters beneath the surface and deliver them to an onboard analytical laboratory for detailed examination. The Mars Organic Molecule Analyzer (MOMA) investigation forms a core part of the sample analysis capability of ExoMars. Its top objective is to address the main “life signs” goal of the mission through detailed chemical analysis of the acquired samples. MOMA characterizes organic compounds in the samples with a novel dual ion source ion trap mass spectrometer (ITMS). The ITMS supports both pyrolysis-gas chromatography (pyr-GC) and Mars ambient laser desorption/ionization (LDI) analyses in an extremely compact package. Combined with the unprecedented depth sampling capability of ExoMars, MOMA affords a broad and powerful search for organics over a range of preservational environments, volatility, and molecular weight.


ieee aerospace conference | 2015

Design and demonstration of the Mars Organic Molecule Analyzer (MOMA) on the ExoMars 2018 rover

Ricardo Arevalo; William B. Brinckerhoff; Friso H. W. van Amerom; Ryan M. Danell; Veronica Pinnick; Xiang Li; Stephanie A. Getty; Lars Hovmand; Andrej Grubisic; Paul R. Mahaffy; Fred Goesmann; Harald Steininger

The Mars Organic Molecule Analyzer (MOMA) investigation is a key astrobiology experiment scheduled to launch on the joint ESA-Roscosmos ExoMars 2018 rover mission. MOMA will examine the chemical composition of geological samples acquired from depths of up to two meters below the martian surface, where fragile organic molecules may be protected from destructive cosmic radiation and/or oxidative chemical reactions. The heart of the MOMA mass spectrometer subsystem (i.e., MOMA-MS) is a miniaturized linear ion trap (LIT) that supports two distinct modes of operation to detect: i) volatile and semi-volatile, low-to-moderate mass organics (≤500 Da) via pyrolysis coupled with gas chromatography mass spectrometry (pyr/GCMS); and, ii) more refractory, moderate-to-high mass compounds (up to 1000 Da) via laser desorption (LDMS) at ambient Mars pressures. Additionally, the LIT mass analyzer enables selective ion trapping via multi-frequency waveform ion excitation (e.g., stored waveform inverse Fourier transform, or SWIFT), and structural characterization of complex molecules using tandem mass spectrometry (MS/MS). A high-fidelity Engineering Test Unit (ETU) of MOMA-MS, including the LIT subassembly, dual-gun electron ionization source, micropirani pressure gauge, solenoid-driven aperture valve, redundant detection chains, and control electronics, has been built and tested at NASA GSFC under relevant operational conditions (pressure, temperature, etc.). Spaceflight qualifications of individual hardware components and integrated subassemblies have been validated through vibration, shock, thermal, lifetime, and performance evaluations. The ETU serves as a pathfinder for the flight model buildup, integration and test, as the ETU meets the form, fit and function of the flight unit that will be delivered to MPS in late 2015. To date, the ETU of MOMA-MS has been shown to meet or exceed all functional requirements, including mass range, resolution, accuracy, instrumental drift, and limit-of-detection specifications, thereby enabling the primary science objectives of the MOMA investigation and ExoMars 2018 mission.


Journal of Analytical Atomic Spectrometry | 2014

High-Precision Measurement of Eu/Eu* in Geological Glasses via LA-ICP-MS Analysis

Ming Tang; William F. McDonough; Ricardo Arevalo

Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements. In this work, however, we observed fractionation between light rare earth elements (LREEs) and heavy rare earth elements (HREEs) when using ablation strategies involving large spot sizes (>100 μm) and line scanning mode. In addition (1) ion yields decrease when using spot sizes above 100 μm; (2) (Eu/Eu*)raw positively correlates with carrier gas (He) flow rate, which provides control over the particle size distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)raw shows a positive correlation with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate change, roughly correlate with REE condensation temperatures. The REE fractionation is likely driven by the slight but significant difference in their condensation temperatures. Large particles may not be completely dissociated in the ICP and result in preferential evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu is less refractory than Sm and Gd. The extent of fractionation depends upon the particle size distribution of the aerosol, which in turn is influenced by the laser parameters and matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion of large particles than high aspect ratio ablation, as confirmed by measurements of particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation introduces particles that cannot be decomposed and/or atomized by the ICP and thus results in exacerbated elemental fractionation. Accurate quantification of REE concentrations and Eu/Eu* requires reduction of large particle production during laser ablation. For the reference materials analyzed in this work, the 100 μm spot measurements of Eu/Eu* agreed with GeoRem preferred values within 3%. Our long-term analyses of Eu/Eu* in MPI-DING glass KL-2G and USGS glass BIR-1G were reproducible at 3% (2 RSD).


Astrobiology | 2015

Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

Xiang Li; Ryan M. Danell; William B. Brinckerhoff; Veronica Pinnick; Friso H. W. van Amerom; Ricardo Arevalo; Stephanie A. Getty; Paul R. Mahaffy; Harald Steininger; Fred Goesmann

Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.


Journal of Physics: Conference Series | 2008

Uncertainties in the composition of Earth, its core and silicate sphere

William F. McDonough; Ricardo Arevalo

A self consistent model for the Earth has the heat producing elements, K, Th and U concentrated in the silicate Earth, with negligible quantities stored in the core. With uncertainties reported at the 2 sigma level, the silicate Earth has 80 ± 25 ng/g Th and 20 ± 8 ng/g U, with a Th/U of 3.9 ± 0.4; it also has a K/U of 1.38 ± 0.26* 104 and a K content of 280 ± 120 μg/g. Thus, the radiogenic contribution to the Earths thermal power is 21 ± 4 TW relative to a total output of 46 ± 6 TW.


Journal of Analytical Atomic Spectrometry | 2015

Elemental fractionation during condensation of plasma plumes generated by laser ablation: a ToF-SIMS study of condensate blankets

Ming Tang; Ricardo Arevalo; Yulia S. Goreva; William F. McDonough

Ion imaging of the condensate blanket around a laser ablation site provides a window to study elemental fractionation during condensation of a plasma plume. Here we used a Time-of-Flight Secondary Ion Mass Spectrometer (ToF-SIMS) to conduct depth profiling of the condensate blanket produced by excimer 193 nm laser ablation of NIST 610 glass. Compositional zonings (Ca normalized) revealed by ToF-SIMS are associated with texture gradients in the condensate blanket, as characterized by Secondary Electron Microprobe (SEM) images. Elements that are more volatile than Ca are relatively enriched in the inner zones (proximal to the ablation site) while more refractory elements are variable in their distributions. Volatility and ionization potential exert influence on elemental fractionation in plasma plume condensation processes as documented by the contrasting fractionation behaviors of alkaline and alkaline earth metals. Compositional zonings in the condensate blanket are due to physical and chemical zonings (e.g., temperature, pressure, electron density, speciation, etc.) within the condensing plume as it expands and cools. Zoned condensation may be a primary mechanism driving the elemental fractionation associated with laser ablation.


Rapid Communications in Mass Spectrometry | 2018

An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight

Ricardo Arevalo; Laura Selliez; Christelle Briois; Nathalie Carrasco; L. Thirkell; Barnabé Cherville; Fabrice Colin; Bertrand Gaubicher; Benjamin Farcy; Xiang Li; Alexander Makarov

RATIONALE The investigation of cryogenic planetary environments as potential harbors for extant life and/or contemporary sites of organic synthesis represents an emerging focal point in planetary exploration. Next generation instruments need to be capable of unambiguously determining elemental and/or molecular stoichiometry via highly accurate mass measurements and the separation of isobaric interferences. METHODS An Orbitrap™ analyzer adapted for spaceflight (referred to as the CosmOrbitrap), coupled with a commercial pulsed UV laser source (266 nm), was used to successfully characterize a variety of planetary analog samples via ultrahigh resolution laser desorption/ablation mass spectrometry. The materials analyzed in this study include: jarosite (a hydrous sulfate detected on Mars); magnesium sulfate (a potential component of the subsurface ocean on Europa); uracil (a nucleobase of RNA); and a variety of amino acids. RESULTS The instrument configuration tested here enables: measurement of major elements and organic molecules with ultrahigh mass resolution (m/Δm ≥ 120,000, FWHM); quantification of isotopic abundances with <1.0% (2σ) precision; and identification of highly accurate masses within 3.2 ppm of absolute values. The analysis of a residue of a dilute solution of amino acids demonstrates the capacity to detect twelve amino acids in positive ion mode at concentrations as low as ≤1 pmol/mm2 while maintaining mass resolution and accuracy requirements. CONCLUSIONS The CosmOrbitrap mass analyzer is highly sensitive and delivers mass resolution/accuracy unmatched by any instrument sent into orbit or launched into deep space. This prototype instrument, which maps to a spaceflight implementation, represents a mission-enabling technology capable of advancing planetary exploration for decades to come.


Laser Radar Technology and Applications XXIII | 2018

A mission-enabling UV laser for mass spectrometry (UVMS) with continuously selectable output for in-situ planetary exploration

D. Barry Coyle; Demetrios Poulios; Ricardo Arevalo; Greg Clarke; Paul R. Stysley

Ultra-compact, nanosecond-class spaceflight-compatible UV lasers are finding increasing application in laser desorption, excitation, and ionization analytical applications on planetary missions, such as the detection and characterization of potential molecular biosignatures on Mars or icy moon surfaces. A short pulsed, solid state, UV laser is under development with selectable pulse energy capabilities for optimized sample ion production at a planetary surface.

Collaboration


Dive into the Ricardo Arevalo's collaboration.

Top Co-Authors

Avatar

Ryan M. Danell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephanie A. Getty

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Li

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Mahaffy

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyril Szopa

Institut Universitaire de France

View shared research outputs
Researchain Logo
Decentralizing Knowledge