Ricardo D. Moreno
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ricardo D. Moreno.
Neuron | 1996
Nibaldo C. Inestrosa; Alejandra R. Alvarez; Cristián A. Pérez; Ricardo D. Moreno; Matías Vicente; Claudia Linker; Olivia I. Casanueva; Claudio Soto; Jorge Garrido
Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimers brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimers brain.
Nature | 1999
Peter Sutovsky; Ricardo D. Moreno; João Ramalho-Santos; Tanja Dominko; C Simerly; Gerald Schatten
Like other mammals, humans inherit mitochondria from the mother only, even though the sperm contributes nearly one hundred mitochondria to the fertilized egg. In support of the idea that this strictly maternal inheritance of mitochondrial DNA arises from the selective destruction of sperm mitochondria, we show here that sperm mitochondria inside fertilized cow and monkey eggs are tagged by the recycling marker protein ubiquitin. This imprint is a death sentence that is written during spermatogenesis and executed after the sperm mitochondria encounter the eggs cytoplasmic destruction machinery.
Biology of Reproduction | 2000
Peter Sutovsky; Ricardo D. Moreno; João Ramalho-Santos; Tanja Dominko; Calvin Simerly; Gerald Schatten
Abstract The strictly maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) in mammals is a developmental paradox promoted by an unknown mechanism responsible for the destruction of the sperm mitochondria shortly after fertilization. We have recently reported that the sperm mitochondria are ubiquitinated inside the oocyte cytoplasm and later subjected to proteolysis during preimplantation development (P. Sutovsky et al., Nature 1999; 402:371–372). Here, we provide further evidence for this process by showing that the proteolytic destruction of bull sperm mitochondria inside cow egg cytoplasm depends upon the activity of the universal proteolytic marker, ubiquitin, and the lysosomal apparatus of the egg. Binding of ubiquitin to sperm mitochondria was visualized by monospecific antibodies throughout pronuclear development and during the first embryonic divisions. The recognition and disposal of the ubiquitinated sperm mitochondria was prevented by the microinjection of anti-ubiquitin antibodies and by the treatment of the fertilized zygotes with lysosomotropic agent ammonium chloride. The postfecundal ubiquitination of sperm mitochondria and their destruction was not seen in the hybrid embryos created using cow eggs and sperm of wild cattle, gaur, thus supporting the hypothesis that sperm mitochondrion destruction is species specific. The initial ligation of ubiquitin molecules to sperm mitochondrial membrane proteins, one of which could be prohibitin, occurs during spermatogenesis. Even though the ubiquitin cross-reactivity was transiently lost from the sperm mitochondria during epididymal passage, likely as a result of disulfide bond cross-linking, it was restored and amplified after fertilization. Ubiquitination therefore may represent a mechanism for the elimination of paternal mitochondria during fertilization. Our data have important implications for anthropology, treatment of mitochondrial disorders, and for the new methods of assisted procreation, such as cloning, oocyte cytoplasm donation, and intracytoplasmic sperm injection.
Nature | 1999
Peter Sutovsky; Ricardo D. Moreno; João Ramalho-Santos; Tanja Dominko; Calvin Simerly; Gerald Schatten
Like other mammals, humans inherit mitochondria from the mother only, even though the sperm contributes nearly one hundred mitochondria to the fertilized egg. In support of the idea that this strictly maternal inheritance of mitochondrial DNA arises from the selective destruction of sperm mitochondria, we show here that sperm mitochondria inside fertilized cow and monkey eggs are tagged by the recycling marker protein ubiquitin. This imprint is a death sentence that is written during spermatogenesis and executed after the sperm mitochondria encounter the eggs cytoplasmic destruction machinery.
Biology of Reproduction | 2000
Ricardo D. Moreno; João Ramalho-Santos; Peter Sutovsky; Edward K. L. Chan; Gerald Schatten
Abstract Vesicular membrane trafficking during acrosome biogenesis in bull and rhesus monkey spermatogenesis differs from the somatic cell paradigm as imaged dynamically using the Golgi apparatus probes β-COP, giantin, Golgin-97, and Golgin-95/GM130. In particular, sorting and delivery of proteins seemed less precise during spermatogenesis. In early stages of spermiogenesis, many Golgi resident proteins and specific acrosomal markers were present in the acrosome. Trafficking in both round and elongating spermatids was similar to what has been described for somatic cells, as judged by the kinetics of Golgi protein incorporation into endoplasmic reticulum-like structures after brefeldin A treatment. These Golgi components were retrieved from the acrosome at later stages of differentiation and were completely devoid of immature spermatozoa. Our data suggest that active anterograde and retrograde vesicular transport trafficking pathways, involving both β-COP- and clathrin-coated vesicles, are involved in retrieving Golgi proteins missorted to the acrosome and in controlling the growth and shape of this organelle.
Biology of Reproduction | 2002
João Ramalho-Santos; Gerald Schatten; Ricardo D. Moreno
Abstract Membrane fusion is important to reproduction because it occurs in several steps during the process of fertilization. Many events of intracellular trafficking occur during both spermiogenesis and oogenesis. The acrosome reaction, a key feature during mammalian fertilization, is a secretory event involving the specific fusion of the outer acrosomal membrane and the sperm plasma membrane overlaying the principal piece of the acrosome. Once the sperm has crossed the zona pellucida, the gametes fuse, but in the case of the sperm this process takes place through a specific membrane domain in the head, the equatorial segment. The cortical reaction, a process that prevents polyspermy, involves the exocytosis of the cortical granules to the extracellular milieu. In lower vertebrates, the formation of the zygotic nucleus involves the fusion (syngamia) of the male pronucleus with the female pronucleus. Other undiscovered membrane trafficking processes may also be relevant for the formation of the zygotic centrosome or other zygotic structures. In this review, we focus on the recent discovery of molecular machinery components involved in intracellular trafficking during mammalian spermiogenesis, notably related to acrosome biogenesis. We also extend our discussion to the molecular mechanism of membrane fusion during the acrosome reaction. The data available so far suggest that proteins participating in the intracellular trafficking events leading to the formation of the acrosome during mammalian spermiogenesis are also involved in controlling the acrosome reaction during fertilization.
Oxidative Medicine and Cellular Longevity | 2012
Juan G. Reyes; Jorge G. Farías; Sebastián Henríquez-Olavarrieta; Eva Madrid; Mario Parraga; Andrea B. Zepeda; Ricardo D. Moreno
Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process represents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the scrotum 2 to 7°C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment, pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also be part of the pathophysiological consequences of testicular hypoxia.
Neuroscience Letters | 1992
Jaime Alvarez; Ricardo D. Moreno; Osvaldo Llanos; Nibaldo C. Inestrosa; Enrique Brandan; Tim Colby; Fred S. Esch
Protease inhibition is the mechanism by which some trophic factors promote the extension of neurites. In the rat sciatic nerve, we assessed the ability to induce sprouts of the APP isoform that embodies the Kunitz antiprotease domain and other antiproteases. With the electron microscope, axonal sprouts were found when antiproteases were supplied but not after administration of inactive substances. We conclude that axons have a drive to sprout which can be released by the unbalance of an extracellular protease-antiprotease system. We propose that this system is involved in the pathogenesis of Alzheimers disease.
Journal of Neurochemistry | 2002
Hugo L. Fernandez; Ricardo D. Moreno; Nibaldo C. Inestrosa
Abstract: Acetylcholinesterase (AChE), a highly conserved enzyme in the animal kingdom, is distributed throughout a wide range of vertebrate tissues where it is expressed as multiple molecular forms comprising different arrangements of catalytic and structural subunits. The major AChE form in the CNS is an amphiphilic globular tetramer (G4 AChE) consisting of four identical catalytic subunits attached to cellular membranes by a hydrophobic noncatalytic subunit (P‐subunit). This study focuses primarily on current data involving the structure of the G4 AChE P‐subunit, the expression and regulation of G4 AChE during development and adulthood, and its role(s) in certain neurological disorders including Alzheimers disease.
Biological Research | 2012
Raúl Lagos-Cabré; Ricardo D. Moreno
Bisphenol A [2,2-bis(4-hydroxyphenyl)propane] (BPA), 4-nonylphenol (NP) and di(2-ethylhexyl)phthalate (DEHP), and its metabolite mono-2-ethylhexyl phthalate (MEHP) are chemicals found in plastics, which act as endocrine disruptors (EDs) in animals, including human. EDs act like hormones in the endocrine system, and disrupt the physiologic function of endogenous hormones. Most people are exposed to different endocrine disruptors and concern has been raised about their true effect on reproductive organs. In the testis, they seem to preferentially attack developing testis during puberty rather than adult organs. However, the lack of information about the molecular mechanism, and the apparently controversial effect observed in different models has hampered the understanding of their effects on mammalian spermatogenesis. In this review, we critically discuss the available information regarding the effect of BPA, NP and DEHP/ MEHP upon mammalian spermatogenesis, a major target of EDs. Germ cell sloughing, disruption of the blood-testis-barrier and germ cell apoptosis are the most common effects reported in the available literature. We propose a model at the molecular level to explain the effects at the cellular level, mainly focused on germ cell apoptosis.