Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo de Lima Zollner is active.

Publication


Featured researches published by Ricardo de Lima Zollner.


International Immunopharmacology | 2008

Diacerhein downregulate proinflammatory cytokines expression and decrease the autoimmune diabetes frequency in nonobese diabetic (NOD) mice

Carina Malaguti; Conceição Aparecida Vilella; Karla Priscila Vieira; Gustavo H.M.F. Souza; Stephen Hyslop; Ricardo de Lima Zollner

NOD mice are used as experimental models as they develop type 1 diabetes mellitus (DM-1) spontaneously, with a strong similarity to the human disease. Diabetes mellitus type 1 is characterized by the destruction of the islet, orchestrated by T lymphocytes that induce cytokine release like IL-1beta, promoting an inflammatory process. Diacerhein has antiinflammatory properties, inhibiting IL-1. However, the mechanisms involved in immune modulation are not completely understood. In the present study, serum and pancreatic islets were isolated to investigate the relationship between IL-1beta, IFN-gamma, IL-12 and TNF-alpha expression and diabetes onset, morphological aspects, and diacerhein dose dependence in animals treated with different doses (5, 10 and 50 mg/kg/day) and the control group (saline solution). The results demonstrated upregulation of mRNA islets and downregulation of the serum concentration of IL-1beta, IL-12 and TNF-alpha in the group treated with 5 and 10 mg/kg/day diacerhein, when compared with the saline group, and increased IFN-gamma serum concentration in the group treated with 50 mg/kg/day. These results suggest that diacerhein in NOD mice, decreases, in a dose-dependent manner, the diabetes frequency downregulating proinflammatory cytokines, such as IL-1beta, TNF-alpha, IFN-gamma and IL-12 at posttranscriptional or posttranslational level. Furthermore, using the HPLC method, diacerhein and rhein (active metabolite) were detected in serum and pancreas of treated mice.


Endocrinology | 2011

Diacerhein Improves Glucose Tolerance and Insulin Sensitivity in Mice on a High-Fat Diet

Natália Tobar; Alexandre G. Oliveira; Dioze Guadagnini; Renata A. Bagarolli; Guilherme Z. Rocha; Tiago G. Araújo; Junia Carolina Santos-Silva; Ricardo de Lima Zollner; Luiz H. B. Boechat; José B.C. Carvalheira; Patrícia O. Prada; Mario J.A. Saad

Obesity and type 2 diabetes are characterized by insulin resistance, and the common basis of these events is a chronic and systemic inflammatory process marked by the activation of the c-Jun N-terminal kinase (JNK) and inhibitor-κB kinase (IKKβ)/nuclear factor-κB (NFκB) pathways, up-regulated cytokine synthesis, and endoplasmic reticulum dysfunction. The aim of this study was to evaluate the effects of diacerhein administration, an antiinflammatory drug that reduces the levels of inflammatory cytokines, on insulin sensitivity and signaling in diet-induced obese (DIO) mice. Swiss mice were fed with conventional chow (control group) or a high-fat diet (DIO group). Later, DIO mice were randomly subdivided into a new subgroup (DAR) that received 20 mg/kg diacerhein for 10 d. Western blotting was used to quantify the expression and phosphorylation of insulin receptor, insulin receptor substrate 1, and Akt and of inflammatory mediators that modulate insulin signaling in a negative manner (IKKβ, JNK, and inducible nitric oxide synthase). We show here, for the first time, that the administration of diacerhein in DIO mice improved endoplasmic reticulum stress, reduced JNK and IKKβ phosphorylation, and resulted in a marked improvement in fasting glucose, a decrease in macrophage infiltration in adipose tissue, and a reduced expression and activity of proinflammatory mediators accompanied by an improvement in the insulin signaling mainly in the liver and adipose tissue. Taken together, these results indicate that diacerhein treatment improves insulin sensitivity in obesity, mediated by the reversal of subclinical inflammation, and that this drug may be an alternative therapy for insulin resistance.


Biological Chemistry | 2006

Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function.

Ronaldo C. Araujo; Marcelo A. Mori; Vanessa F. Merino; Jean Loup Bascands; Joost P. Schanstra; Ricardo de Lima Zollner; Conceição A. Villela; Clovis R. Nakaie; Antonio C. M. Paiva; Jorge Luiz Pesquero; Michael Bader; João Bosco Pesquero

Abstract Kinins are potent vasoactive peptides generated in blood and tissues by the kallikrein serine proteases. Two distinct kinin receptors have been described, one constitutive (subtype B2) and one inducible (subtype B1), and many physiological functions have been attributed to these receptors, including glucose homeostasis and control of vascular permeability. In this study we show that mice lacking the kinin B1 receptor (B1 -/- mice) have lower fasting plasma glucose concentrations but exhibit higher glycemia after feeding when compared to wild-type mice. B1 -/- mice also present pancreas abnormalities, characterized by fewer pancreatic islets and lower insulin content, which leads to hypoinsulinemia and reduced insulin release after a glucose load. Nevertheless, an insulin tolerance test indicated higher sensitivity in B1 -/- mice. In line with this phenotype, pancreatic vascular permeability was shown to be reduced in B1 receptor-ablated mice. The B1 agonist desArg9bradykinin injected intravenously can induce the release of insulin into serum, and this effect was not observed in the B1 -/- mice or in isolated islets. Our data demonstrate the importance of the kinin B1 receptor in the control of pancreatic vascular homeostasis and insulin release, highlighting a new role for this receptor in the pathogenesis of diabetes and related diseases.


Brazilian Journal of Medical and Biological Research | 2003

Pentoxifylline decreases tumor necrosis factor and interleukin-1 during high tidal volume.

Itamar Souza de Oliveira-Júnior; Bruno do Valle Pinheiro; I.D.C.G. Silva; Reinaldo Salomão; Ricardo de Lima Zollner; Osvaldo Shigueomi Beppu

Tumor necrosis factor-alpha (TNF-alpha) is one of the most important proinflammatory cytokines which plays a central role in host defense and in the acute inflammatory response related to tissue injury. The major source of TNF-alpha are immune cells such as neutrophils and macrophages. We tested the hypothesis that pentoxifylline, a methylxanthine derivative, down-regulates proinflammatory cytokine expression during acute lung injury in rats. Male Wistar rats weighing 250 to 450 g were anesthetized ip with 50 mg/kg sodium thiopental and randomly divided into three groups: group 1 (N = 7): tidal volume (V T) = 7 ml/kg, respiratory rate (RR) = 50 breaths/min and normal saline infusion; group 2 (N = 7): V T = 42 ml/kg, RR = 9 breaths/min and normal saline infusion; group 3 (N = 7): V T = 42 ml/kg, RR = 9 breaths/min and pentoxifylline infusion. The animals were ventilated with an inspired oxygen fraction of 1.0, a positive end-expiratory pressure of 3 cmH2O, and normal saline or pentoxifylline injected into the left femoral vein. The mRNA of TNF-alpha rapidly increased in the lung tissue within 180 min of ventilation with a higher V T with normal saline infusion. The concentrations of inflammatory mediators were decreased in plasma and bronchoalveolar lavage (BAL) in the presence of higher V T with pentoxifylline infusion (TNF-alpha: plasma, 102.2+/-90.9 and BAL, 118.2+/-82.1; IL-1 : plasma, 45.2+/-42.7 and BAL, 50.2+/-34.9, P < 0.05). We conclude that TNF-alpha produced by neutrophil influx may function as an alert signal in host defense to induce production of other inflammatory mediators.


Cytokine | 2008

Ganglioside GM1 effects on the expression of nerve growth factor (NGF), Trk-A receptor, proinflammatory cytokines and on autoimmune diabetes onset in non-obese diabetic (NOD) mice.

Karla Priscila Vieira; Ana Rachel de Almeida e Silva Lima Zollner; Carina Malaguti; Conceição Aparecida Vilella; Ricardo de Lima Zollner

NOD (non-obese diabetic) mice develop type 1 diabetes mellitus spontaneously and with a strong similarity to the human disease. Differentiation and function of pancreas beta cells are regulated by a variety of hormones and growth factors, including the nerve growth factor (NGF). Gangliosides have multiple immunomodulatory activities with immunosuppressive properties, decreasing lymphoproliferative responses and modulating cytokine production. In the present study, serum, pancreas islets and spleen mononuclear cells from NOD mice treated with monosialic ganglioside GM1 (100 mg/kg/day) and the group control which received saline solution were isolated to investigate the proinflammatory cytokines (IL-1beta, IFN-gamma, IL-12, TNF-alpha), NGF and its high-affinity receptor TrkA, peri-islet Schwann cells components (GFAP, S100-beta) expression and the relationship with diabetes onset and morphological aspects. Our results suggest that GM1 administration to female NOD mice beginning at the 4th week of life is able to reduce the index of inflammatory infiltrate and consequently the expression of diabetes, modulating the expression of proinflammatory cytokines (IL-12, IFN-gamma, TNF-alpha and IL-1beta). Furthermore, GM1 increases GFAP, S-100beta and NGF in pancreas islets, factors involved in beta cell survival.


Brazilian Journal of Chemical Engineering | 2004

Preparation and characterization of liposomes entrapping allergenic proteins

E. C. M. Cabral; Ricardo de Lima Zollner; Maria Helena Andrade Santana

This work presents results of the preparation and characterization of small unilamellar liposomes for entrapping allergenic proteins extracted from the biomass of Dreschlera (Helminthosporium) monoceras cultivated by solid fermentation. Protein was entrapped by the dehydration-rehydration method, using lyophilization of preformed liposomes in order to prevent their degradation The reconstitution of lyophilized liposomes by hydration, their capacity for entrapping allergenic proteins and their stability in plasma were analyzed. Liposomes were reconstituted in size by including trehalose sugar in the formulation. The protection of the liposomal membrane by trehalose was characterized by differential scanning calorimetry and X-ray diffraction. The reconstituted membrane had an osmotic behavior similar to that of nondehydrated ones. Allergenic proteins ranging in molecular weight from 14 to 170 kDa were entrapped in the lipid matrix with an efficiency of approximately 80%. These results are promising for producing liposomes by entrapping allergenic proteins from mold extracts, which can be useful for allergy therapy.


International Immunopharmacology | 2014

Antioxidant and anti-diabetic potential of Passiflora alata Curtis aqueous leaves extract in type 1 diabetes mellitus (NOD-mice).

Talita Cristina Colomeu; D. Figueiredo; Cinthia Baú Betim Cazarin; Nayara Simon Gonzalez Schumacher; M.R. Maróstica; Laura Maria Molina Meletti; Ricardo de Lima Zollner

Leaves of Passiflora alata Curtis were characterized for their antioxidant capacity. Antioxidant analyses of DPPH, FRAP, ABTS, ORAC and phenolic compounds were made in three different extracts: aqueous, methanol/acetone and ethanol. Aqueous extract was found to be the best solvent for recovery of phenolic compounds and antioxidant activity, when compared with methanol/acetone and ethanol. To study the anti-inflammatory properties of this extract in experimental type 1 diabetes, NOD mice were divided into two groups: the P. alata group, treated with aqueous extract of P. alata Curtis, and a non-treated control group, followed by diabetes expression analysis. The consumption of aqueous extract and water ad libitum lasted 28 weeks. The treated-group presented a decrease in diabetes incidence, a low quantity of infiltrative cells in pancreatic islets and increased glutathione in the kidney and liver (p<0.05), when compared with the diabetic and non-diabetic control-groups. In conclusion, our results suggest that the consumption of aqueous extract of P. alata may be considered a good source of natural antioxidants and compounds found in its composition can act as anti-inflammatory agents, helping in the control of diabetes.


Brazilian Journal of Medical and Biological Research | 2002

Kinetics of TNF-alpha and IFN-gamma mRNA expression in islets and spleen of NOD mice

D. Ventura-Oliveira; C.A. Vilella; M.E. Zanin; G.M. Castro; D.C. Moreira Filho; Ricardo de Lima Zollner

Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 +/- 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 +/- 8 AU, P<0.05) and 28 weeks (144 +/- 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with beta cell destruction and overt diabetes.


Biomolecular Engineering | 2001

In vitro removal of human IgG autoantibodies by affinity filtration using immobilized L-histidine onto PEVA hollow fiber membranes.

Roberta Cristina Arena Ventura; Ricardo de Lima Zollner; Cécile Legallais; Mookambeswaran A. Vijayalakshmi; Sonia Maria Alves Bueno

Histidine was immobilized onto PEVA membrane to obtain an affinity support for human IgG removal from serum with a view to clinical apheresis for the treatment of autoimmune diseases. These membranes were able to remove in vitro several autoantibodies from the serum of SLE patients.


Journal of Magnetism and Magnetic Materials | 2001

Preparation and characterization of affinity magnetoliposomes useful for the detection of antiphospholipid antibodies

Fernanda M Rocha; Samantha Cristina de Pinho; Ricardo de Lima Zollner; Maria Helena Andrade Santana

The preparation of phosphatidylcholine-based magnetoliposomes containing the affinity target phospholipids, phosphatidylethanolamine (PE), phosphatidylserine (PS), and cardiolipin (CL), was studied. These magnetoliposomes are potentially useful as adsorbents for the detection of antiphospholipid antibodies. The dry-lipid film hydration method was used to prepare magnetoliposomes containing CL, while PE- or PS-containing magnetoliposomes were prepared by adsorption of phospholipids on magnetite. Both types of magnetoliposomes were characterized by iron and phospholipid content, mean diameter, size distribution, and retention efficiency in a high-gradient magnetic field.

Collaboration


Dive into the Ricardo de Lima Zollner's collaboration.

Top Co-Authors

Avatar

Flavia Maria Netto

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge