Ricardo Del Sol
Swansea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ricardo Del Sol.
Journal of Bacteriology | 2003
Javier Campos; Eriel Martínez; Edith Suzarte; Boris L. Rodríguez; Karen Marrero; Yussuan Silva; Talena Ledón; Ricardo Del Sol; Rafael Fando
We describe a novel filamentous phage, designated VGJφ, isolated from strain SG25-1 of Vibrio cholerae O139, which infects all O1 (classical and El Tor) and O139 strains tested. The sequence of the 7,542 nucleotides of the phage genome reveals that VGJφ has a distinctive region of 775 nucleotides and a conserved region with an overall genomic organization similar to that of previously characterized filamentous phages, such as CTXφ of V. cholerae and Ff phages of Escherichia coli. The conserved region carries 10 open reading frames (ORFs) coding for products homologous to previously reported peptides of other filamentous phages, and the distinctive region carries one ORF whose product is not homologous to any known peptide. VGJφ, like other filamentous phages, uses a type IV pilus to infect V. cholerae; in this case, the pilus is the mannose-sensitive hemagglutinin. VGJφ-infected V. cholerae overexpresses the product of one ORF of the phage (ORF112), which is similar to single-stranded DNA binding proteins of other filamentous phages. Once inside a cell, VGJφ is able to integrate its genome into the same chromosomal attB site as CTXφ, entering into a lysogenic state. Additionally, we found an attP structure in VGJφ, which is also conserved in several lysogenic filamentous phages from different bacterial hosts. Finally, since different filamentous phages seem to integrate into the bacterial dif locus by a general mechanism, we propose a model in which repeated integration events with different phages might have contributed to the evolution of the CTX chromosomal region in V. cholerae El Tor.
Journal of Bacteriology | 2007
Ricardo Del Sol; Ian Armstrong; Chris J. Wright; Paul Dyson
Cell surface changes that accompany the complex life cycle of Streptomyces coelicolor were monitored by atomic force microscopy (AFM) of living cells. Images were obtained using tapping mode to reveal that young, branching vegetative hyphae have a relatively smooth surface and are attached to an inert silica surface by means of a secreted extracellular matrix. Older hyphae, representing a transition between substrate and aerial growth, are sparsely decorated with fibers. Previously, a well-organized stable mosaic of fibers, called the rodlet layer, coating the surface of spores has been observed using electron microscopy. AFM revealed that aerial hyphae, prior to sporulation, possess a relatively unstable dense heterogeneous fibrous layer. Material from this layer is shed as the hyphae mature, revealing a more tightly organized fibrous mosaic layer typical of spores. The aerial hyphae are also characterized by the absence of the secreted extracellular matrix. The formation of sporulation septa is accompanied by modification to the surface layer, which undergoes localized temporary disruption at the sites of cell division. The characteristics of the hyphal surfaces of mutants show how various chaplin and rodlin proteins contribute to the formation of fibrous layers of differing stabilities. Finally, older spores with a compact rodlet layer develop surface concavities that are attributed to a reduction of intracellular turgor pressure as metabolic activity slows.
Microbiology | 2010
Sandra Akpe San Roman; Paul D. Facey; Lorena T. Fernández-Martínez; Caridad Rodríguez; Carlos Vallin; Ricardo Del Sol; Paul Dyson
An esx locus, related to the multiple esx loci of Mycobacterium tuberculosis, is conserved in all sequenced Streptomyces genomes, where it is associated with the developmental regulatory gene bldB. Here we demonstrate that the esxBA operon, comprising part of the locus, has a novel morphogenetic function in the model species Streptomyces coelicolor. This operon encodes two proteins belonging to the WXG-100 superfamily that can form a heterodimer and are secreted in the absence of signal sequences. A mutation in esxBA results in a delay in sporulation, with eventual development of aerial hyphae with chains of abnormally sized spore compartments possessing irregular DNA contents. During early sporulation, expression of the operon is elevated in a bldB mutant. Other genes in the locus, notably SCO5734 and SCO5721, encode components of a type VII secretion system. Disruption of either of these genes prevents secretion of EsxAB but has no effect on sporulation. To explain the morphogenetic function of EsxAB, we propose that the heterodimer sequesters a regulator of expression of genes involved in nucleoid organization during sporulation.
Molecular Microbiology | 2009
Lorena Fernández Martínez; Amy Bishop; Lindsay Parkes; Ricardo Del Sol; Paola Salerno; Beatrica Sevcikova; Vladislava Mazurakova; January Kormanec; Paul Dyson
As free‐living non‐motile saprophytes, Streptomyces need to adapt to a wide range of environmental conditions and this is reflected by an enormous diversity of regulatory proteins encoded by, for example, the genome of the model streptomycete Streptomyces coelicolor. In this organism, we have identified a new osmoregulation gene, osaC, encoding a member of a novel family of regulatory proteins. Members of the family have a predicted domain composition consisting of an N‐terminal kinase domain related to anti‐sigma factors, sensory Pas and Gaf domains, and a C‐terminal phosphatase domain. osaC is linked to the response regulator gene osaB; expression analysis of the latter revealed that it is induced after osmotic stress in a σB‐dependent manner. OsaC is required to return osaB and sigB expression back to constitutive levels after osmotic stress. From analysis of the activities of OsaCΔPho, lacking the C‐terminal phosphatase domain, and OsaCN92A, with a substitution of a critical asparagine residue in the kinase domain, we infer that this N‐terminal domain functions as a σB anti‐sigma factor. Indeed, co‐purification experiments indicate association of OsaC and σB. These results support a model for post‐osmotic stress modulation of σB activity by OsaC.
Journal of Bacteriology | 2008
Bhavesh V. Mistry; Ricardo Del Sol; Chris J. Wright; Kim Findlay; Paul Dyson
The conserved rodA and ftsW genes encode polytopic membrane proteins that are essential for bacterial cell elongation and division, respectively, and each gene is invariably linked with a cognate class B high-molecular-weight penicillin-binding protein (HMW PBP) gene. Filamentous differentiating Streptomyces coelicolor possesses four such gene pairs. Whereas rodA, although not its cognate HMW PBP gene, is essential in these bacteria, mutation of SCO5302 or SCO2607 (sfr) caused no gross changes to growth and septation. In contrast, disruption of either ftsW or the cognate ftsI gene blocked the formation of sporulation septa in aerial hyphae. The inability of spiral polymers of FtsZ to reorganize into rings in aerial hyphae of these mutants indicates an early pivotal role of an FtsW-FtsI complex in cell division. Concerted assembly of the complete divisome was unnecessary for Z-ring stabilization in aerial hyphae as ftsQ mutants were found to be blocked at a later stage in cell division, during septum closure. Complete cross wall formation occurred in vegetative hyphae in all three fts mutants, indicating that the typical bacterial divisome functions specifically during nonessential sporulation septation, providing a unique opportunity to interrogate the function and dependencies of individual components of the divisome in vivo.
Proceedings of the Royal Society B: Biological Sciences | 2016
Miranda M. A. Whitten; Paul D. Facey; Ricardo Del Sol; Lorena T. Fernández-Martínez; Meirwyn Evans; Jacob J. Mitchell; Owen Bodger; Paul Dyson
RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Deyarina Gonzalez; Nurul Hamidi; Ricardo Del Sol; Joris J. Benschop; Thomas Nancy; Chao Li; Lewis W. Francis; Manuel Tzouros; Jeroen Krijgsveld; Frank C. P. Holstege; R. Steven Conlan
Significance Mediator is a megadalton multisubunit molecular switchboard involved in gene regulation in eukaryotes and is structurally conserved between species. It bridges the general transcription machinery and function-specific DNA binding proteins. It plays a dynamic role in regulating a wide range of processes, involving, for example, thyroid and vitamin D receptors. The role of Mediator appears to be in the fine tuning of the activation and repression of gene expression in many organisms, yet the underlying mechanisms of how its own function is regulated remains to be unraveled. Here we demonstrate how Mediator autoregulates its own function by cross-talk between the tail module and the Cdk8 kinase module in an active process involving priming of the mediator component Med3 for ubiquitin-ligase (Grr1)–mediated degradation by Cdk8 phosphorylation. Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II–transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.
PLOS ONE | 2011
Paul D. Facey; Beatrica Sevcikova; Renata Novakova; Matthew D. Hitchings; Jason C. Crack; Jan Kormanec; Paul Dyson; Ricardo Del Sol
The DpsA protein plays a dual role in Streptomyces coelicolor, both as part of the stress response and contributing to nucleoid condensation during sporulation. Promoter mapping experiments indicated that dpsA is transcribed from a single, sigB-like dependent promoter. Expression studies implicate SigH and SigB as the sigma factors responsible for dpsA expression while the contribution of other SigB-like factors is indirect by means of controlling sigH expression. The promoter is massively induced in response to osmotic stress, in part due to its sensitivity to changes in DNA supercoiling. In addition, we determined that WhiB is required for dpsA expression, particularly during development. Gel retardation experiments revealed direct interaction between apoWhiB and the dpsA promoter region, providing the first evidence for a direct WhiB target in S. coelicolor.
PLOS ONE | 2013
Recep Liman; Paul D. Facey; Geertje van Keulen; Paul Dyson; Ricardo Del Sol
Phylogenetic reconstruction revealed that most Actinobacterial orthologs of S. coelicolor SCO2837, encoding a metal-dependent galactose oxidase-like protein, are found within Streptomyces and were probably acquired by horizontal gene transfer from fungi. Disruption of SCO2837 (glxA) caused a conditional bld phenotype that could not be reversed by extracellular complementation. Studies aimed at characterising the regulation of expression of glxA showed that it is not a target for other bld genes. We provide evidence that glxA is required for osmotic adaptation, although independently from the known osmotic stress response element SigB. glxA has been predicted to be part of an operon with the transcription unit comprising the upstream cslA gene and glxA. However, both phenotypic and expression studies indicate that it is also expressed from an independent promoter region internal to cslA. GlxA displays an in situ localisation pattern similar to that one observed for CslA at hyphal tips, but localisation of the former is independent of the latter. The functional role of GlxA in relation to CslA is discussed.
Journal of Bacteriology | 2003
Ricardo Del Sol; Andrew Pitman; Paul Herron; Paul Dyson
On solid media, the reproductive growth of Streptomyces involves antibiotic biosynthesis coincident with the erection of filamentous aerial hyphae. Following cessation of growth of an aerial hypha, multiple septation occurs at the tip to form a chain of unigenomic spores. A gene, crgA, that coordinates several aspects of this reproductive growth is described. The gene product is representative of a well-conserved family of small actinomycete proteins with two C-terminal hydrophobic-potential membrane-spanning segments. In Streptomyces avermitilis, crgA is required for sporulation, and inactivation of the gene abolished most sporulation septation in aerial hyphae. Disruption of the orthologous gene in Streptomyces coelicolor indicates that whereas CrgA is not essential for sporulation in this species, during growth on glucose-containing media, it influences the timing of the onset of reproductive growth, with precocious erection of aerial hyphae and antibiotic production by the mutant. Moreover, CrgA subsequently acts to inhibit sporulation septation prior to growth arrest of aerial hyphae. Overexpression of CrgA in S. coelicolor, uncoupling any nutritional and growth phase-dependent regulation, results in growth of nonseptated aerial hyphae on all media tested, consistent with a role for the protein in inhibiting sporulation septation.