Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo Fernández is active.

Publication


Featured researches published by Ricardo Fernández.


Journal of Hypertension | 2009

Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells.

Felipe Simon; Ricardo Fernández

Background Endothelial dysfunction is a crucial step in the pathogenesis of cardiovascular diseases. Reactive oxygen species (ROS) generated in response to lipopolysaccharide (LPS) during sepsis promotes progressive endothelial failure. Typically, LPS-stimulated leukocytes produce pro-inflammatory cytokines, which trigger endothelial ROS production through NAD(P)H oxidase (Nox) activation, in a process that takes hours. Noteworthy, endothelial cells exposed to LPS may also generate ROS in just a few minutes. However, the mechanisms underlying this early event and its deleterious effect in endothelial function are unknown. Here, we investigated the mechanisms of early LPS-induced ROS generation and its effect in endothelial cell viability. Methods Human umbilical vein endothelial cells were exposed to LPS for 1–40 min to study ROS generation, cytokines expression, and signaling transduction by confocal microscopy, real-time PCR (RT-PCR), western blot, and immunoprecipation. Fourty-eight hour treatments were used to determine cell death by MTT assay, cell counting, and flow cytometry. Contribution of specific Nox isoform was evaluated using a siRNAs approach. Results LPS rapidly evoked a cytokine-independent ROS production, eliciting a rapid increase in p47phox phosphorylation by a phospholipase C/conventional protein kinase C and PI3-K signaling. It is noteworthy that the early LPS-induced ROS production triggered significant endothelial necrosis, which was prevented by a previous, but not a posterior, antioxidant treatment. The early LPS-induced ROS production as well as endothelial necrosis was totally dependent of Nox2 and Nox4 activity. Conclusion Endothelial cells exposure to LPS triggers an early ROS production. Remarkably, this single early ROS production is enough to generate extensive endothelial cell death by necrosis dependent on the activity of Nox2 and Nox4. Because, in sepsis, ROS production can cause endothelial dysfunction, results here provided may be relevant when considering the development of strategies for sepsis therapy.


Experimental Physiology | 2008

Lipopolysaccharide‐induced carotid body inflammation in cats: functional manifestations, histopathology and involvement of tumour necrosis factor‐α

Ricardo Fernández; Sergio González; Sergio Rey; Paula P. Cortés; Kevin Maisey; Edison-Pablo Reyes; C. Larraín; P. Zapata

In the absence of information on functional manifestations of carotid body (CB) inflammation, we studied an experimental model in which lipopolysaccharide (LPS) administration to pentobarbitone‐anaesthetized cats was performed by topical application upon the CB surface or by intravenous infusion (endotoxaemia). The latter caused: (i) disorganization of CB glomoids, increased connective tissue, and rapid recruitment of polymorphonuclear cells into the vascular bed and parenchyma within 4 h; (ii) increased respiratory frequency and diminished ventilatory chemoreflex responses to brief hypoxia (breathing 100% N2 for 10 s) and diminished ventilatory chemosensory drive (assessed by 100% O2 tests) during normoxia and hypoxia; (iii) tachycardia, increased haematocrit and systemic hypotension in response to LPS i.v.; and (iv) increased basal frequency of carotid chemosensory discharges during normoxia, but no change in maximal chemoreceptor responses to brief hypoxic exposures. Lipopolysaccharide‐induced tachypnoea was prevented by prior bilateral carotid neurotomy. Apoptosis was not observed in CBs from cats subjected to endotoxaemia. Searching for pro‐inflammatory mediators, tumour necrosis factor‐α (TNF‐α) was localized by immunohistochemistry in glomus and endothelial cells; reverse transcriptase‐polymerase chain reaction revealed that the CB expresses the mRNAs for both type‐1 (TNF‐R1) and type‐2 TNF‐α receptors (TNF‐R2); Western blot confirmed a band of the size expected for TNF‐R1; and histochemistry showed the presence of TNF‐R1 in glomus cells and of TNF‐R2 in endothelial cells. Experiments in vitro showed that the frequency of carotid nerve discharges recorded from CBs perfused and superfused under normoxic conditions was not significantly modified by TNF‐α, but that the enhanced frequency of chemosensory discharges recorded along responses to hypoxic stimulation was transiently diminished in a dose‐dependent manner by TNF‐α injections. The results suggest that the CB may operate as a sensor for immune signals, that the CB exhibits histological features of acute inflammation induced by LPS, that TNF‐α may participate in LPS‐induced changes in chemosensory activity and that some pathophysiological reactions to high levels of LPS in the bloodstream may originate from changes in CB function.


Laboratory Investigation | 2014

Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-b1 and TGF-b2-dependent pathway

Ignacio Montorfano; Alvaro Becerra; Roberto Cerro; César Echeverría; Elizabeth Sáez; María Gabriela Morales; Ricardo Fernández; Claudio Cabello-Verrugio; Felipe Simon

During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial markers and increasing those of fibrotic and ECM proteins. The underlying mechanism depends on the ALK5/Smad3/NF-κB pathway. Oxidative stress induces the expression and secretion of TGF-β1 and TGF-β2 and p38 MAPK phosphorylation. Downregulation of TGF-β1 and TGF-β2 by siRNA technology abolished the H2O2-induced conversion. To our knowledge, this is the first report showing that oxidative stress is able to induce conversion of ECs into myofibroblasts via TGF-β secretion, emerging as a source for oxidative stress-based vascular dysfunction. Thus, oxidative stress emerges as a decisive factor in inducing conversion of ECs into myofibroblasts through a TGF-β-dependent mechanism, changing the ECs protein expression profile, and converting normal ECs into pathological ones. This information will be useful in designing new and improved therapeutic strategies against oxidative stress-mediated systemic inflammatory diseases.


American Journal of Physiology-heart and Circulatory Physiology | 2009

NO production and eNOS phosphorylation induced by epinephrine through the activation of β-adrenoceptors

Xavier F. Figueroa; Inés Poblete; Ricardo Fernández; Cristóbal Pedemonte; Víctor Cortés; J. Pablo Huidobro-Toro

Epinephrine plays a key role in the control of vasomotor tone; however, the participation of the NO/cGMP pathway in response to beta-adrenoceptor activation remains controversial. To evaluate the involvement of the endothelium in the vascular response to epinephrine, we assessed NO production, endothelial NO synthase phosphorylation, and tissue accumulation of cGMP in the perfused arterial mesenteric bed of rat. Epinephrine elicited a concentration-dependent increase in NO (EC(50) of 45.7 pM), which was coupled to cGMP tissue accumulation. Both NO and cGMP production were blocked by either endothelium removal (saponin) or NO synthase inhibition (N(omega)-nitro-L-arginine). Blockade of beta(1)- and beta(2)-adrenoceptors with 1 microM propranolol or beta(3)-adrenoceptor with 10 nM SR 59230A displaced rightward the concentration-NO production curve evoked by epinephrine. Selective stimulation of beta(1)-, beta(2)-, or beta(3)-adrenoceptors also resulted in NO and cGMP production. Propranolol (1 microM) inhibited the rise in NO induced by isoproterenol or the beta(2)-adrenoceptor agonists salbutamol, terbutaline, or fenoterol. Likewise, 10 nM SR 59230A reduced the effects of the beta(3)-adrenoceptor agonists BRL 37344, CGP 12177, SR 595611A, or pindolol. The NO production induced by epinephrine and BRL 37344 was associated with the activation of the phosphatidylinositol 3-kinase/Akt pathway and phosphorylation of eNOS in serine 1177. In addition, in anaesthetized rats, bolus administration of isoproterenol, salbutamol, or BRL 37344 produced NO-dependent reductions in systolic blood pressure. These findings indicate that beta(1)-, beta(2)-, and beta(3)-adrenoceptors are coupled to the NO/cGMP pathway, highlighting the role of the endothelium in the vasomotor action elicited by epinephrine and related beta-adrenoceptor agonists.


Respiratory Physiology & Neurobiology | 2011

Immunosensory signalling by carotid body chemoreceptors

P. Zapata; C. Larraín; Pablo Reyes; Ricardo Fernández

Injections of lipopolysaccharide (LPS) have been used to produce the signs of sepsis and study their underlying mechanisms. Intravenous (IV) injections of LPS in anesthetized cats induce tachypnea, tachycardia and hypotension, but ventilatory changes are suppressed after sectioning carotid and aortic nerves. Otherwise, LPS increases the basal frequency of carotid chemosensory discharges, but reduces ventilatory and chemosensory responses to hypoxia and nicotine injections. Increases in cytokines (IL-1β, IL-6 and TNF-α) are observed in plasma and tissues after injecting LPS. In carotid bodies perfused in vitro, TNF-α reduces chemosensory discharges induced by hypoxia. The rat carotid body and its sensory ganglion constitutively express LPS canonical receptor, TLR4, as well as TNF-α and its receptors (TNF-R1 and TNF-R2). Increases of TNF-α and TNF-R2 expression occur after LPS administration. The activation of peripheral and central autonomic pathways induced by LPS or ILs is partly dependent on intact vagus nerves. Thus, the carotid and vagus nerves provide routes between the immune system and CNS structures involved in systemic inflammatory responses.


European Journal of Immunology | 2015

Alloreactive regulatory T cells generated with retinoic acid prevent skin allograft rejection.

Carolina Moore; Gabriela Tejón; Camila Fuentes; Yessia Hidalgo; María Rosa Bono; Paula Maldonado; Ricardo Fernández; Kathryn J. Wood; Juan Alberto Fierro; Mario Rosemblatt; Daniela Sauma; Andrew Bushell

CD4+CD25+Foxp3+ regulatory T (Treg) cells mediate immunological self‐tolerance and suppress immune responses. Retinoic acid (RA), a natural metabolite of vitamin A, has been reported to enhance the differentiation of Treg cells in the presence of TGF‐β. In this study, we show that the co‐culture of naive T cells from C57BL/6 mice with allogeneic antigen‐presenting cells (APCs) from BALB/c mice in the presence of TGF‐β, RA, and IL‐2 resulted in a striking enrichment of Foxp3+ T cells. These RA in vitro‐induced regulatory T (RA‐iTreg) cells did not secrete Th1‐, Th2‐, or Th17‐related cytokines, showed a nonbiased homing potential, and expressed several cell surface molecules related to Treg‐cell suppressive potential. Accordingly, these RA‐iTreg cells suppressed T‐cell proliferation and inhibited cytokine production by T cells in in vitro assays. Moreover, following adoptive transfer, RA‐iTreg cells maintained Foxp3 expression and their suppressive capacity. Finally, RA‐iTreg cells showed alloantigen‐specific immunosuppressive capacity in a skin allograft model in immunodeficient mice. Altogether, these data indicate that functional and stable allogeneic‐specific Treg cells may be generated using TGF‐β, RA, and IL‐2. Thus, RA‐iTreg cells may have a potential use in the development of more effective cellular therapies in clinical transplantation.


Respiratory Physiology & Neurobiology | 2011

Lipopolysaccharide signaling in the carotid chemoreceptor pathway of rats with sepsis syndrome

Ricardo Fernández; Gino Nardocci; Felipe Simon; Aldo Martin; Alvaro Becerra; Carolina Rodriguez-Tirado; Kevin Maisey; Claudio Acuña-Castillo; Paula P. Cortés

In addition to their role in cardiorespiratory regulation, carotid body (CB) chemoreceptors serve as sensors for inflammatory status and as a protective factor during sepsis. However, lipopolysaccharide-induced sepsis (LPS) reduces CB responsiveness to excitatory or depressant stimuli. We tested whether LPS exerts a direct effect on the carotid chemoreceptor pathway, the CB and its sensory ganglion. We determined that the rat CB and nodose-petrosal-jugular ganglion complex (NPJgc) express TLR4, TNF-α and its receptors (TNF-R1 and TNF-R2). LPS administration (15mg/kg intraperitoneally) evoked MyD88-mechanism pathway activation in CB and NPJgc, with NF-κB p65, p38 MAPK, and ERK activation. Consistently, LPS increased TNF-α and TNF-R2. Double-labeling studies showed that the aforementioned pathway occurs in TH-containing glomus cells and NPJgc neurons, components of the chemosensitive neural pathway. Thus, our results suggest that LPS acting directly through TLR4/MyD88-mechanism pathways increases TNF-α and TNF-R2 expression in the carotid chemoreceptor pathway. These results show a novel afferent pathway to the central nervous system during endotoxemia, and could be relevant in understanding sepsis pathophysiology and therapy.


Respiratory Physiology & Neurobiology | 2002

Acute ventilatory and circulatory reactions evoked by nicotine: are they excitatory or depressant?

Ricardo Fernández; C. Larraín; P. Zapata

Either excitatory or inhibitory cardio-respiratory responses induced by nicotine have been reported. We evaluated the joint and separate contributions of peripheral arterial chemoreceptors and pulmonary vagal afferences to nicotine-induced cardio-respiratory responses in 11 pentobarbitone-anaesthetized cats. Nicotine, given i.v. in doses of from 1 to 200 microg/kg, evoked dose-dependent transient increases in tidal volume (VT) and arterial blood pressure (BP), but the highest doses evoked brief apnoea, immediately followed by intense hyperventilation, as well as discrete early hypotension followed by late hypertension. Bilateral section of the aortic and carotid nerves abolished all hyperventilatory responses to nicotine, giving way to apnoea followed by few cycles of reduced VT and profound hypotension followed by slight hypertension in response to intermediate doses (50-100 microg/kg). Subsequent bilateral vagotomy (BV) suppressed apnoeic and hypotensive responses. In other cats initially subjected to BV, only increases in VT and BP were observed in response to nicotine, effects which were no longer observed after additional carotid and aortic deafferentation. These data suggest that excitatory effects of nicotine on respiration and BP are reflexes evoked by stimulation of peripheral arterial chemoreceptors, while inhibitory effects are also reflex responses but evoked from stimulation of pulmonary vagal afferences.


Frontiers in Cellular Neuroscience | 2014

Opening of pannexin- and connexin-based channels increases the excitability of nodose ganglion sensory neurons.

Mauricio A. Retamal; Julio Alcayaga; Christian A. Verdugo; Geert Bultynck; Luc Leybaert; Pablo J. Sáez; Ricardo Fernández; Luis E. León; Juan C. Sáez

Satellite glial cells (SGCs) are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system (CNS), astrocytes present connexin43 (Cx43) hemichannels and pannexin1 (Panx1) channels, and the opening of these channels allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complexes (NPJcs) using confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and in sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to a Ca2+/Mg2+-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT). Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because in those from Panx1 knockout mice showed a reduced increase of neuronal activity induced by Ca2+/Mg2+-free extracellular conditions. The data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.


Frontiers in Physiology | 2014

Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy

Ricardo Fernández; Gino Nardocci; Cristina Navarro; Edison P. Reyes; Claudio Acuña-Castillo; Paula P. Cortés

Sepsis progresses to multiple organ dysfunction due to the uncontrolled release of inflammatory mediators, and a growing body of evidence shows that neural signals play a significant role in modulating the immune response. Thus, similar toall other physiological systems, the immune system is both connected to and regulated by the central nervous system. The efferent arc consists of the activation of the hypothalamic–pituitary–adrenal axis, sympathetic activation, the cholinergic anti-inflammatory reflex, and the local release of physiological neuromodulators. Immunosensory activity is centered on the production of pro-inflammatory cytokines, signals that are conveyed to the brain through different pathways. The activation of peripheral sensory nerves, i.e., vagal paraganglia by the vagus nerve, and carotid body (CB) chemoreceptors by the carotid/sinus nerve are broadly discussed here. Despite cytokine receptor expression in vagal afferent fibers, pro-inflammatory cytokines have no significant effect on vagus nerve activity. Thus, the CB may be the source of immunosensory inputs and incoming neural signals and, in fact, sense inflammatory mediators, playing a protective role during sepsis. Considering that CB stimulation increases sympathetic activity and adrenal glucocorticoids release, the electrical stimulation of arterial chemoreceptors may be suitable therapeutic approach for regulating systemic inflammation.

Collaboration


Dive into the Ricardo Fernández's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Zapata

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edison P. Reyes

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge