Ricardo Gamelas Sousa
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ricardo Gamelas Sousa.
iberian conference on pattern recognition and image analysis | 2011
Ajalmar R. da Rocha Neto; Ricardo Gamelas Sousa; Guilherme A. Barreto; Jaime S. Cardoso
Computer aided diagnosis systems with the capability of automatically decide if a patient has or not a pathology and to hold the decision on the dificult cases, are becoming more frequent. The latter are afterwards reviewed by an expert reducing therefore time consuption on behalf of the expert. The number of cases to review depends on the cost of erring the diagnosis. In this work we analyse the incorporation of the option to hold a decision on the diagnostic of pathologies on the vertebral column. A comparison with several state of the art techniques is performed. We conclude by showing that the use of the reject option techniques is an asset in line with the current view of the research community.
international conference on machine learning and applications | 2010
Joaquim Pinto da Costa; Ricardo Gamelas Sousa; Jaime S. Cardoso
Support vector machines (SVMs) were initially proposed to solve problems with two classes. Despite the myriad of schemes for multiclassification with SVMs proposed since then, little work has been done for the case where the classes are ordered. Usually one constructs a nominal classifier and a posteriori defines the order. The definition of an ordinal classifier leads to a better generalisation. Moreover, most of the techniques presented so far in the literature can generate ambiguous regions. All-at-Once methods have been proposed to solve this issue. In this work we devise a new SVM methodology based on the unimodal paradigm with the All-at-Once scheme for the ordinal classification.
international conference on machine learning and applications | 2009
Ricardo Gamelas Sousa; Beatriz Mora; Jaime S. Cardoso
In this work we consider the problem of binary classification where the classifier may abstain instead of classifying each observation, leaving the critical items for human evaluation. This article motivates and presents a novel method to learn the reject region on complex data. Observations are replicated and then a single binary classifier determines the decision plane. The proposed method is an extension of a method available in the literature for the classification of ordinal data. Our method is compared with standard techniques on synthetic and real datasets, emphasizing the advantages of the proposed approach.
systems, man and cybernetics | 2014
Chetak Kandaswamy; Luís M. Silva; Luís A. Alexandre; Ricardo Gamelas Sousa; Jorge M. Santos; Joaquim Marques de Sá
Transfer learning is a process that allows reusing a learning machine trained on a problem to solve a new problem. Transfer learning studies on shallow architectures show low performance as they are generally based on hand-crafted features obtained from experts. It is therefore interesting to study transference on deep architectures, known to directly extract the features from the input data. A Stacked Denoising Autoencoder (SDA) is a deep model able to represent the hierarchical features needed for solving classification problems. In this paper we study the performance of SDAs trained on one problem and reused to solve a different problem not only with different distribution but also with a different tasks. We propose two different approaches: 1) unsupervised feature transference, and 2) supervised feature transference using deep transfer learning. We show that SDAs using the unsupervised feature transference outperform randomly initialized machines on a new problem. We achieved 7% relative improvement on average error rate and 41% on average computation time to classify typed uppercase letters. In the case of supervised feature transference, we achieved 5.7% relative improvement in the average error rate, by reusing the first and second hidden layer, and 8.5% relative improvement for the average error rate and 54% speed up w.r.t the baseline by reusing all three hidden layers for the same data. We also explore transfer learning between geometrical shapes and canonical shapes, we achieved 7.4% relative improvement on average error rate in case of supervised feature transference approach.
Artificial Intelligence, Evolutionary Computing and Metaheuristics | 2013
Ricardo Gamelas Sousa; Iryna Yevseyeva; Joaquim Pinto da Costa; Jaime S. Cardoso
Operations Research (OR) and Artificial Intelligence (AI) disciplines have been playing major roles on the design of new intelligent systems. Recently, different contributions from both fields have been made on the models design for problems with multi-criteria. The credit scoring problem is an example of that. In this problem, one evaluates how unlikely a client will default with his payments. Client profiles are evaluated, being their results expressed in terms of an ordinal score scale (Excelent ≻ Good ≻ Fair ≻ Poor). Intelligent systems have then to take in consideration different criteria such as payment history, mortgages, wages among others in order to commit their outcome. To achieve this goal, researchers have been delving models capable to render these multiple criteria encompassed on ordinal data.
biomedical engineering systems and technologies | 2008
Jaime S. Cardoso; Ricardo Gamelas Sousa; Luís Filipe Teixeira; Maria João Cardoso
Breast cancer conservative treatment (BCCT), due to its proven oncological safety, is considered, when feasible, the gold standard of breast cancer treatment. However, aesthetic results are heterogeneous and difficult to evaluate in a standardized way, due to the lack of reproducibility of the subjective methods usually applied. The objective assessment methods, considered in the past as being less capable of evaluating all aspects of BCCT, are nowadays being preferred to overcome the drawbacks of the subjective evaluation. A computer-aided medical system was recently developed to objectively and automatically evaluate the aesthetic result of BCCT. In this system, the detection of the breast contour on the patient’s digital photograph is a necessary step to extract the features subsequently used in the evaluation process. In this paper an algorithm based on the shortest path on a graph is proposed to detect automatically the breast contour. The proposed method extends an existing semi-automatic algorithm for the same purpose. A comprehensive comparison with manually-drawn contours reveals the strength of the proposed method.
international conference on machine learning and applications | 2012
Jaime S. Cardoso; Ricardo Gamelas Sousa; Inês Domingues
Ordinal data classification (ODC) has a wide range of applications in areas where human evaluation plays an important role, ranging from psychology and medicine to information retrieval. In ODC the output variable has a natural order; however, there is not a precise notion of the distance between classes. The recently proposed method for ordinal data, Kernel Discriminant Learning Ordinal Regression (KDLOR), is based on Linear Discriminant Analysis (LDA), a simple tool for classification. KDLOR brings LDA to the forefront in the ODC held, motivating further research. This paper compares three LDA based algorithms for ODC. The first method uses the generic framework of Frank and Hall for ODC instantiated with a kernel version of LDA. Similarly, the second method is based on the also generic Data Replication framework for ODC instantiated with the same kernel version of LDA. Both the Frank and Hall and Data Replication methods address the ODC problem by the use of a base binary classifier. Finally, the third method under comparison is KDLOR. The experiments are carried out on synthetic and real datasets. A comparison between the performances of the three systems is made based on tstatistics. The performance and running time complexity of the methods do not support any advantage of KDLOR over the other two methods.
Ai Communications | 2013
Ricardo Gamelas Sousa; Jaime S. Cardoso
Classification is one of the most important tasks of machine learning. Although the most well studied model is the two-class problem, in many scenarios there is the opportunity to label critical items for manual revision, instead of trying to automatically classify every item.In this paper we tailor a paradigm initially proposed for the classification of ordinal data to address the classification problem with reject option. The technique reduces the problem of classifying with reject option to the standard two-class problem. The introduced method is then mapped into support vector machines and neural networks. Finally, the framework is extended to multiclass ordinal data with reject option. An experimental study with synthetic and real datasets verifies the usefulness of the proposed approach.
intelligent systems design and applications | 2011
Ricardo Gamelas Sousa; Jaime S. Cardoso
While ordinal classification problems are common in many situations, induction of ordinal decision trees has not evolved significantly. Conventional trees for regression settings or nominal classification are commonly induced for ordinal classification problems. On the other hand a decision tree consistent with the ordinal setting is often desirable to aid decision making in such situations as credit rating. In this work we extend a recently proposed strategy based on constraints defined globally over the feature space. We propose a bootstrap technique to improve the accuracy of the baseline solution. Experiments in synthetic and real data show the benefits of our proposal.
international conference on machine learning and applications | 2010
Jaime S. Cardoso; Ricardo Gamelas Sousa
Ordinal classification is a form of multi-class classification where there is an inherent ordering between the classes, but not a meaningful numeric difference between them. Although conventional methods, designed for nominal classes or regression problems, can be used to solve the ordinal data problem, there are benefits in developing models specific to this kind of data. This paper introduces a new rationale to include the information about the order in the design of a classification model. The method encompasses the inclusion of consistency constraints between adjacent decision regions. A new decision tree and a new nearest neighbour algorithms are then designed under that rationale. An experimental study with artificial and real data sets verifies the usefulness of the proposed approach.