Ricardo Guelerman Pinheiro Ramos
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Ricardo Guelerman Pinheiro Ramos is active.
Publication
Featured researches published by Ricardo Guelerman Pinheiro Ramos.
BMC Genomics | 2004
Francis M. F. Nunes; Valeria Valente; Josane F. Sousa; Marco A.V. Cunha; Daniel G. Pinheiro; Rafaela M. Maia; Daniela D. Araujo; Maria Cristina R. Costa; Waleska K. Martins; Alex F. Carvalho; Nadia Monesi; Adriana Mendes do Nascimento; Pablo Marco Veras Peixoto; Maria de Fátima Rodrigues da Silva; Ricardo Guelerman Pinheiro Ramos; Luis F.L. Reis; Emmanuel Dias-Neto; Sandro J. de Souza; Andrew J.G. Simpson; Marco A. Zago; Ademilson Espencer Egea Soares; Márcia Maria Gentile Bitondi; Enilza M. Espreafico; Foued Salmen Espindola; Maria Luisa Paçó-Larson; Zilá Luz Paulino Simões; Klaus Hartfelder; Wilson A. Silva
BackgroundThe ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers.ResultsOf the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes.ConclusionsThe versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes.
Journal of Cellular Physiology | 2010
Lucas T. Parreiras-e-Silva; Augusto D. Luchessi; Rosana I. Reis; Constance Oliver; Maria Célia Jamur; Ricardo Guelerman Pinheiro Ramos; Eduardo B. Oliveira; Rui Curi; Claudio M. Costa-Neto
Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post‐translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post‐implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation. J. Cell. Physiol. 225: 500–505, 2010.
Mechanisms of Development | 2003
Helena Araujo; Luciana Claudia Herculano Machado; Shirlei Octacilio-Silva; C.Mieko Mizutani; Marcelo J. Silva; Ricardo Guelerman Pinheiro Ramos
The roughest locus of Drosophila melanogaster encodes a transmembrane protein of the immunoglobulin superfamily required for several developmental processes, including axonal pathfinding in the developing optic lobe, mechanosensory bristle differentiation and myogenesis. In the compound eye, rst was previously shown to be required for establishing the correct number and spacing of secondary and tertiary pigment cells during the final steps of ommatidial assembly. We have further investigated its function in the developing pupal retina by performing a developmental and molecular analysis of a novel dominant rst allele, rst(D). In addition to showing evidence that rst(D) is a regulatory mutant, the results strongly suggest a previously unnoticed role of the rst gene in the differentiation of secondary/tertiary pigment cell fate as well as establishing the correct timing of surplus cell removal by programmed cell death in the compound eye.
Development Genes and Evolution | 2004
Holger Apitz; Melanie Kambacheld; Martin Höhne; Ricardo Guelerman Pinheiro Ramos; Angela Straube; Karl-Friedrich Fischbach
Roughest (Rst) is a cell adhesion molecule of the immunoglobulin superfamily with pleiotropic functions during the development of Drosophila melanogaster. It has been shown to be involved in cell sorting before apoptosis in the developing compound eye, in fusion processes of embryonic muscle development and in axonal pathfinding. In accordance with its multiple functions, the rst gene shows a dynamic expression pattern throughout the development of Drosophila. In order to understand the transcriptional regulation of rst expression we have identified rst cis regulatory sequences in an enhancer detection screen. By dissection of the identified rst cis regulatory sequences we identified several distinct rst regulatory modules. Among others these include elements for expression in interommatidial cells of the pupal eye disc at a time when apoptotic decisions are made in these cells and elements for expression in the embryonic mesoderm. The expression of rst in the embryonic mesoderm is regulated by at least two separate modules.
Genesis | 2012
Lucas Anhezini; Ana Paula Saita; Mara Silvia A. Costa; Ricardo Guelerman Pinheiro Ramos; Claudio Roberto Simon
Larval tissues undergo programmed cell death (PCD) during Drosophila metamorphosis. PCD is triggered in a stage and tissue‐specific fashion in response to ecdysone pulses. The understanding of how ecdysone induces the stage and tissue‐specificity of cell death remains obscure. Several steroid‐regulated primary response genes have been shown to act as key regulators of cellular responses to ecdysone by inducing a cascade of transcriptional regulation of late responsive genes. In this article, the authors identify Fhos as a gene that is required for Drosophila larval salivary gland destruction. Animals with a P‐element mutation in Fhos possess persistent larval salivary glands, and precise excisions of this P‐element insertion resulted in reversion of this salivary gland mutant phenotype. Fhos encodes the Drosophila homolog of mammalian Formin Fhos. Fhos is differentially transcribed during development and responds to ecdysone in a method that is similar to other cell death genes. Similarly to what has been shown for its mammalian counterpart, FHOS protein is translocated to the nucleus at later stages of cell death. Fhos mutants posses disrupted actin cytoskeleton dynamics in persistent salivary glands. Together, our data indicate that Fhos is a new ecdysone‐regulated gene that is crucial for changes in the actin cytoskeleton during salivary gland elimination in Drosophila. genesis 50:672–684, 2012.
PLOS ONE | 2011
Maiaro Cabral Rosa Machado; Shirlei Octacilio-Silva; Mara Silvia A. Costa; Ricardo Guelerman Pinheiro Ramos
Background Drosophila retinal architecture is laid down between 24–48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level.
Genesis | 2009
Cláudio R. Simon; Livia Moda; Shirlei Octacilio-Silva; Lucas Anhezini; Luciana C.H. Machado-Gitai; Ricardo Guelerman Pinheiro Ramos
The Drosophila roughest (rst) locus encodes an immunoglobulin superfamily transmembrane glycoprotein implicated in a variety of embryonic and postembryonic developmental processes. Here we demonstrate a previously unnoticed role for this gene in the autophagic elimination of larval salivary glands during early pupal stages by showing that overexpression of the Rst protein ectodomain in early pupa leads to persistence of salivary glands up to at least 12 hours after head eversion, although with variable penetrance. The same phenotype is observed in individuals carrying the dominant regulatory allele rstD, but not in loss of function alleles. Analysis of persistent glands at the ultrastructural level showed that programmed cell death starts at the right time but is arrested at an early stage of the process. Finally we describe the expression pattern and intracellular distribution of Rst in wild type and rstD mutants, showing that its downregulation in salivary glands at the beginning of pupal stage is an important factor in the correct implementation of the autophagic program of this tissue in space and time. genesis 47:492–504, 2009.
BMC Genomics | 2007
Rafaela M. Maia; Valeria Valente; Marco A.V. Cunha; Josane F. Sousa; Daniela D. Araujo; Wilson A. Silva; Marco A. Zago; Emmanuel Dias-Neto; Sandro J. de Souza; Andrew J.G. Simpson; Nadia Monesi; Ricardo Guelerman Pinheiro Ramos; Enilza M. Espreafico; Maria Luisa Paçó-Larson
BackgroundThe sequencing of the D.melanogaster genome revealed an unexpected small number of genes (~ 14,000) indicating that mechanisms acting on generation of transcript diversity must have played a major role in the evolution of complex metazoans. Among the most extensively used mechanisms that accounts for this diversity is alternative splicing. It is estimated that over 40% of Drosophila protein-coding genes contain one or more alternative exons. A recent transcription map of the Drosophila embryogenesis indicates that 30% of the transcribed regions are unannotated, and that 1/3 of this is estimated as missed or alternative exons of previously characterized protein-coding genes. Therefore, the identification of the variety of expressed transcripts depends on experimental data for its final validation and is continuously being performed using different approaches. We applied the Open Reading Frame Expressed Sequence Tags (ORESTES) methodology, which is capable of generating cDNA data from the central portion of rare transcripts, in order to investigate the presence of hitherto unnanotated regions of Drosophila transcriptome.ResultsBioinformatic analysis of 1,303 Drosophila ORESTES clusters identified 68 sequences derived from unannotated regions in the current Drosophila genome version (4.3). Of these, a set of 38 was analysed by polyA+ northern blot hybridization, validating 17 (50%) new exons of low abundance transcripts. For one of these ESTs, we obtained the cDNA encompassing the complete coding sequence of a new serine protease, named SP212. The SP212 gene is part of a serine protease gene cluster located in the chromosome region 88A12-B1. This cluster includes the predicted genes CG9631, CG9649 and CG31326, which were previously identified as up-regulated after immune challenges in genomic-scale microarray analysis. In agreement with the proposal that this locus is co-regulated in response to microorganisms infection, we show here that SP212 is also up-regulated upon injury.ConclusionUsing the ORESTES methodology we identified 17 novel exons from low abundance Drosophila transcripts, and through a PCR approach the complete CDS of one of these transcripts was defined. Our results show that the computational identification and manual inspection are not sufficient to annotate a genome in the absence of experimentally derived data.
Journal of Neurogenetics | 2014
Mara Silvia A. Costa; Maiaro Cabral Rosa Machado; Felipe M. Vieceli; Luana Amistá; Jose Eduardo Baroneza; C. Y. Irene Yan; Ricardo Guelerman Pinheiro Ramos
Abstract The Rst-Neph family comprises an evolutionarily conserved group of single-pass transmembrane glycoproteins that belong to the immunoglobulin superfamily and participate in a wide range of cell adhesion and recognition events in both vertebrates and invertebrates. In mammals and fish, three Rst-Neph members, named Neph1–3, are present. Besides being widely expressed in the embryo, particularly in the developing nervous system, they also contribute to the formation and integrity of the urine filtration apparatus in the slit diaphragm of kidney glomerular podocytes, where they form homodimers, as well as heterodimers with Nephrin, another immunoglobulin-like cell adhesion molecule. In mice, absence of Neph1 causes severe proteinuria, podocyte effacement and perinatal death, while in humans, a mutated form of Nephrin leads to congenital nephrotic syndrome of the Finnish type. Intriguingly, neither Nephrin nor Neph3 are present in birds, which nevertheless have typical vertebrate kidneys with mammalian-like slit diaphragms. These characteristics make, in principle, avian systems very helpful for understanding the evolution and functional significance of the complex interactions displayed by Rst-Neph proteins. To this end we have started a systematic study of chicken Neph embryonic and post-embryonic expression, both at mRNA and protein level. RT-qPCR mRNA quantification of the two Neph paralogues in adult tissues showed that both are expressed in heart, brain, and retina. Neph1 is additionally present in kidney, liver, pancreas, lungs, and testicles, while Neph2 mRNA is barely detected in kidney, testicles, pancreas and absent in liver and lungs. In embryos, mRNA from both genes can already be detected at as early as stage HH14, and remain expressed until at least HH28. Finally, we used a specific antibody to examine the spatial dynamics and subcellular distribution of ggNeph2 between stages HH20–28, particularly in the mesonephros, dermomyotomes, developing heart, and retina.
Mechanisms of Development | 2018
Maiaro Cabral Rosa Machado; Felipe Berti Valer; Carlos A. Couto-Lima; Ricardo Guelerman Pinheiro Ramos
Cell adhesion molecules play a central role in morphogenesis, as they mediate the complex range of interactions between different cell types that result in their arrangement in multicellular organs and tissues. How their coordinated dynamic expression in space and time - an essential requirement for their function - is regulated at the genomic and transcriptional levels constitutes an important, albeit still little understood question. The Irre Cell Recognition Module (IRM) is a highly conserved phylogenetically group of structurally related single pass transmembrane glycoproteins belonging to the immunoglobulin superfamily that in Drosophila melanogaster are encoded by the genes roughest (rst), kin-of-irre (kirre), sticks-and-stones (sns) and hibris (hbs). Their cooperative and often partly redundant action are crucial to major developmental processes such axonal pathfinding, myoblast fusion and patterning of the pupal retina. In this latter system rst and kirre display a tightly regulated complementary transcriptional pattern so that lowering rst mRNA levels leads to a concomitant increase in kirre mRNA concentration. Here we investigated whether other IRM components are similarly co-regulated and the extent changes in their mRNA levels affect each other as well as their collective function in retinal patterning. Our results demonstrate that silencing any of the four IRM genes in 24% APF retinae changes the levels all other group members although only kirre and hbs mRNA levels are increased. Furthermore, expression, in a rst null background, of truncated versions of rst cDNA in which the portion encoding the intracellular domain has been partially or completely removed not only can still induce changes in mRNA levels of other IRM members but also result in Kirre mislocalization. Taken together, our data point to the presence of a highly precise and fine-tuned control mechanism coordinating IRM expression that may be crucial to the functional redundancy shown by its components during the patterning of the pupal retina.