Ricardo J. Andrade
University of Nantes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ricardo J. Andrade.
Scandinavian Journal of Medicine & Science in Sports | 2016
Ricardo J. Andrade; Lilian Lacourpaille; Sandro R. Freitas; Peter McNair; Antoine Nordez
Ankle joint range of motion (ROM) is notably influenced by the position of the hip joint. However, this result remains unexplained. Thus, the aim of this study was to test if the ankle passive torque and gastrocnemius muscle tension are affected by the hip and the head positions. The torque and the muscle shear elastic modulus (measured by elastography to estimate muscle tension) were collected in nine participants during passive ankle dorsiflexions performed in four conditions (by combining hip flexion at 90 or 150°, and head flexed or neutral). Ankle maximum dorsiflexion angle significantly decreased by flexing the hip from 150 to 90° (P < 0.001; mean difference 17.7 ± 2.5°), but no effect of the head position was observed (P > 0.05). Maximal passive torque and shear elastic modulus were higher with the hip flexed at 90° (P < 0.001). During submaximal ROM, no effects of the head and hip positioning (P > 0.05) were found for both torque and shear elastic modulus at a given common ankle angle among conditions. Shifts in maximal ankle angle due to hip angle manipulation are not related neither to changes in passive torque nor tension of the gastrocnemius. Further studies should be addressed to better understand the functional role of peripheral nerves and fasciae in the ankle ROM limits.
Physics in Medicine and Biology | 2016
Helfenstein-Didier C; Ricardo J. Andrade; Javier Brum; François Hug; Mickael Tanter; Antoine Nordez; J.-L. Gennisson
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽ 0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
Journal of Biomechanics | 2016
Ricardo J. Andrade; Antione Nordez; François Hug; Filiz Ateş; Michael W. Coppieters; Pedro Pezarat-Correia; Sandro R. Freitas
Peripheral nerves are exposed to mechanical stress during movement. However the in vivo mechanical properties of nerves remain largely unexplored. The primary aim of this study was to characterize the effect of passive dorsiflexion on sciatic nerve shear wave velocity (an index of stiffness) when the knee was in 90° flexion (knee 90°) or extended (knee 180°). The secondary aim was to determine the effect of five repeated dorsiflexions on the nerve shear wave velocity. Nine healthy participants were tested. The repeatability of sciatic nerve shear wave velocity was good for both knee 90° and knee 180° (ICCs ≥ 0.92, CVs ≤ 8.1%). The shear wave velocity of the sciatic nerve significantly increased (p<0.0001) during dorsiflexion when the knee was extended (knee 180°), but no changes were observed when the knee was flexed (90°). The shear wave velocity-angle relationship displayed a hysteresis for knee 180°. Although there was a tendency for the nerve shear wave velocity to decrease throughout the repetition of the five ankle dorsiflexions, the level of significance was not reached (p=0.055). These results demonstrate that the sciatic nerve stiffness can be non-invasively assessed during passive movements. In addition, the results highlight the importance of considering both the knee and the ankle position for clinical and biomechanical assessment of the sciatic nerve. This non-invasive technique offers new perspectives to provide new insights into nerve mechanics in both healthy and clinical populations (e.g., specific peripheral neuropathies).
Journal of Anatomy | 2017
Guillaume Le Sant; Antoine Nordez; Ricardo J. Andrade; François Hug; Sandro R. Freitas; Raphaël Gross
It is challenging to differentiate the mechanical properties of synergist muscles in vivo. Shear wave elastography can be used to quantify the shear modulus (i.e. an index of stiffness) of a specific muscle. This study assessed the passive behavior of lower leg muscles during passive dorsiflexion performed with the knee fully extended (experiment 1, n = 22) or with the knee flexed at 90° (experiment 2, n = 20). The shear modulus measurements were repeated twice during experiment 1 to assess the inter‐day reliability. During both experiments, the shear modulus of the following plantar flexors was randomly measured: gastrocnemii medialis (GM) and lateralis (GL), soleus (SOL), peroneus longus (PL), and the deep muscles flexor digitorum longus (FDL), flexor hallucis longus (FHL), tibialis posterior (TP). Two antagonist muscles tibialis anterior (TA), and extensor digitorum longus (EDL) were also recorded. Measurements were performed in different proximo‐distal regions for GM, GL and SOL. Inter‐day reliability was adequate for all muscles (coefficient of variation < 15%), except for TP. In experiment 1, GM exhibited the highest shear modulus at 80% of the maximal range of motion (128.5 ± 27.3 kPa) and was followed by GL (67.1 ± 24.1 kPa). In experiment 2, SOL exhibited the highest shear modulus (55.1 ± 18.0 kPa). The highest values of shear modulus were found for the distal locations of both the GM (80% of participants in experiment 1) and the SOL (100% of participants in experiment 2). For both experiments, deep muscles and PL exhibited low levels of stiffness during the stretch in young asymptomatic adults, which was unknown until now. These results provide a deeper understanding of passive mechanical properties and the distribution of stiffness between and within the plantar flexor muscles during stretching between them and thus could be relevant to study the effects of aging, disease progression, and rehabilitation on stiffness.
International Journal of Sports Physiology and Performance | 2015
Sandro R. Freitas; João R. Vaz; Paula Marta Bruno; Maria João Valamatos; Ricardo J. Andrade; Pedro Mil-Homens
UNLABELLED Static stretching with rest between repetitions is often performed to acutely increase joint flexibility. PURPOSE To test the effects of the lack of resting between stretching repetitions and the minimal number of stretching repetitions required to change the maximal range of motion (ROM), maximal tolerated joint passive torque (MPT), and submaximal passive torque at a given angle (PT). METHODS Five static stretching repetitions with a 30-s rest-interval (RI) and a no-rest-interval (NRI) stretching protocol were compared. Participants (N=47) were encouraged to perform the maximal ROM without pain in all the repetitions. Each repetition lasted 90 s. Maximal ROM, MPT, PT, and muscle activity were compared between protocols for the same number of stretching repetitions. RESULTS The NRI produced a higher increase in maximal ROM and MPT during and after stretching (P<.05). PT decreased in both protocols, although the NRI tended to have a lower decrement across different submaximal angles (.05<P<.08) in the initial range of the torque-angle curve. Significant changes in maximal ROM (P<.01) and PT (P<.01) were obtained at the 3rd and 2nd repetitions of RI, respectively. The RI did not significantly increase the MPT (P=.12) after stretching; only the NRI did (P<.01). CONCLUSIONS Lack of rest between repetitions more efficiently increased the maximal ROM and capacity to tolerate PT during and after stretching. The use of 30 s rest between repetitions potentiates the decrease in PT. Rest intervals should not be used if the aim is to acutely increase maximal ROM and peak passive torque.
Sports Medicine | 2017
Antoine Nordez; Raphaël Gross; Ricardo J. Andrade; Guillaume Le Sant; Sandro R. Freitas; Richard Ellis; Peter McNair; François Hug
Stretching is widely used in sport training and clinical practice with the aim of increasing muscle-tendon extensibility and joint range of motion. The underlying assumption is that extensibility increases as a result of increased passive tension applied to muscle-tendon units. In some stretching protocols, this condition is not always met sufficiently to trigger adaptation within the muscle-tendon unit. For example, there is experimental evidence that both acute and chronic stretching interventions may increase the maximal range of motion in the absence of changes in the passive torque-angle curve. We contend that these results are partly explained by the influence of non-muscular structures that contribute only marginally to the passive torque. The potential candidates are the nervous system and fasciae, which would play an important role in the perception of the stretch and in the limitation of the range of motion of the maximal joints. At least in part, this may explain the lack of a significant effect of some chronic stretching interventions to change passive muscle tension.
Scandinavian Journal of Medicine & Science in Sports | 2015
Ricardo J. Andrade; Sandro R. Freitas; João R. Vaz; Paula Marta Bruno; Pedro Pezarat-Correia
This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque‐angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque‐angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension.
International Journal of Sports Medicine | 2015
Sandro R. Freitas; João R. Vaz; Paula Marta Bruno; Ricardo J. Andrade; Pedro Mil-Homens
This study examined whether a high-intensity, moderate-duration bout of stretching would produce the same acute effects as a low-intensity, long-duration bout of stretching. 17 volunteers performed 2 knee-flexor stretching protocols: a high-intensity stretch (i. e., 100% of maximum tolerable passive torque) with a moderate duration (243.5 ± 69.5-s); and a low-intensity stretch (50% of tolerable passive torque) with a long duration (900-s). Passive torque at a given sub-maximal angle, peak passive torque, maximal range of motion (ROM), and muscle activity were assessed before and after each stretching protocol (at intervals of 1, 30 and 60 min). The maximal ROM and tolerable passive torque increased for all time points following the high-intensity stretching (p<0.05), but not after the low-intensity protocol (p>0.05). 1 min post-stretching, the passive torque decreased in both protocols, but to a greater extent in the low-intensity protocol. 30 min post-test, torque returned to baseline for the low-intensity protocol and had increased above the baseline for the high-intensity stretches. The following can be concluded: 1) High-intensity stretching increases the maximal ROM and peak passive torque compared to low-intensity stretching; 2) low-intensity, long-duration stretching is the best way to acutely decrease passive torque; and 3) high-intensity, moderate-duration stretching increases passive torque above the baseline 30 min after stretching.
Scientific Reports | 2018
Ricardo J. Andrade; Sandro R. Freitas; François Hug; Guillaume Le Sant; Lilian Lacourpaille; Raphaël Gross; Peter McNair; Antoine Nordez
It is a long held belief that maximal joint range of motion (ROM) is restricted by muscle tension. However, it exists indirect evidence suggesting that this assumption may not hold true for some joint configurations where non-muscular structures, such as the peripheral nerves, are stretched. Direct evidences are lacking. This study aimed to determine whether a static stretching aiming to load the sciatic nerve without stretch within plantar flexors is effective to: (i) alter nerve stiffness; and (ii) increase the ankle’s maximal ROM. Passive maximal ankle ROM in dorsiflexion was assessed with the hip flexed at 90° (HIP-flexed) or neutral (HIP-neutral, 0°). Sciatic nerve stiffness was estimated using shear wave elastography. Sciatic nerve stretching induced both a 13.3 ± 7.9% (P < 0.001) decrease in the nerve stiffness and a 6.4 ± 2.6° increase in the maximal dorsiflexion ROM assessed in HIP-flexed. In addition, the decrease in sciatic nerve stiffness was significantly correlated with the change in maximal ROM in dorsiflexion (r = −0.571, P = 0.026). These effects occurred in the absence of any change in gastrocnemius medialis and biceps femoris stiffness, and ankle passive torque. These results demonstrate that maximal dorsiflexion ROM can be acutely increased by stretching the sciatic nerve, without altering the muscle stiffness.
Journal of Applied Physiology | 2018
Guillaume Le Sant; Antoine Nordez; François Hug; Ricardo J. Andrade; Thomas Lecharte; Peter McNair; Raphaël Gross
Contractures are common complications of a stroke. The spatial location of the increased stiffness among plantar flexors and its variability among survivors remain unknown. This study assessed the mechanical properties of the lower leg muscles in stroke survivors during passive dorsiflexions. Stiffness was estimated through the measurement of the shear modulus. Two experiments were independently conducted, in which participants lay supine: with the knee extended ( experiment 1, n = 13 stroke survivors and n = 13 controls), or with the knee flexed at 90° ( experiment 2, n = 14 stroke survivors and n = 14 controls). The shear modulus of plantar flexors [gastrocnemius medialis (three locations), gastrocnemius lateralis (three locations), soleus (two locations), flexor digitorum longus, flexor hallucis longus), peroneus longus] and dorsiflexors (tibialis anterior and extensor digitorum longus) was measured using ultrasound shear wave elastography during passive dorsiflexions (2°/s). At the same ankle angle, stroke survivors displayed higher shear modulus than controls for gastrocnemius medialis and gastrocnemius lateralis (knee extended) and soleus (knee flexed). Very low shear modulus was found for the other muscles. The adjustment for muscle slack angle suggested that the increased shear modulus was arising from consequences of contractures. The stiffness distribution between muscles was consistent across participants with the highest shear modulus reported for the most distal regions of gastrocnemius medialis (knee extended) and soleus (knee flexed). These results provide a better appreciation of stiffness locations among plantar flexors of stroke survivors and can provide evidence for the implementation of clinical trials to evaluate targeted interventions applied on these specific muscle regions. NEW & NOTEWORTHY The shear modulus of 13 muscle regions was assessed in stroke patients using elastography. When compared with controls, shear modulus was increased in the gastrocnemius muscle (GM) when the knee was extended and in the soleus (SOL) when the knee was flexed. The distal regions of GM and SOL were the most affected. These changes were consistent in all the stroke patients, suggesting that the regions are a potential source of the increase in joint stiffness.