Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo Marques is active.

Publication


Featured researches published by Ricardo Marques.


Environmental Science and Pollution Research | 2012

Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant

R. Salgado; Ricardo Marques; J.P. Noronha; Gilda Carvalho; Adrian Oehmen; Maria A.M. Reis

PurposeThis study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign.MethodsSolid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP.ResultsResults show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank.ConclusionsThe main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.


Environmental Pollution | 2011

Assessing the diurnal variability of pharmaceutical and personal care products in a full-scale activated sludge plant

R. Salgado; Ricardo Marques; J.P. Noronha; João T. Mexia; Gilda Carvalho; Adrian Oehmen; Maria A.M. Reis

An intensive sampling campaign has been carried out in a municipal wastewater treatment plant (WWTP) to assess the dynamics of the influent pharmaceutical active compounds (PhAC) and musks. The mass loadings of these compounds in wastewater influents displayed contrasting diurnal variations depending on the compound. The musks and some groups of PhACs tended to follow a similar diurnal trend as compared to macropollutants, while the majority of PhACs followed either the opposite trend or no repeatable trend. The total musk loading to the WWTP was 0.74 ± 0.25 g d(-1), whereas the total PhAC mass loading was 84.7 ± 63.8 g d(-1). Unlike the PhACs, the musks displayed a high repeatability from one sampling day to the next. The range of PhAC loadings in the influent to WWTPs can vary several orders of magnitude from one day or week to the next, representing a challenge in obtaining data for steady-state modelling purposes.


international conference on parallel processing | 2013

Algorithmic skeleton framework for the orchestration of GPU computations

Ricardo Marques; Hervé Paulino; Fernando Alexandre; Pedro D. Medeiros

The Graphics Processing Unit (GPU) is gaining popularity as a co-processor to the Central Processing Unit (CPU). However, harnessing its capabilities is a non-trivial exercise that requires good knowledge of parallel programming, more so when the complexity of these applications is increasingly rising. Languages such as StreamIt [1] and Lime [2] have addressed the offloading of composed computations to GPUs. However, to the best of our knowledge, no support exists at library level. To this extent, we propose Marrow, an algorithmic skeleton framework for the orchestration of OpenCL computations. Marrow expands the set of skeletons currently available for GPU computing, and enables their combination, through nesting, into complex structures. Moreover, it introduces optimizations that overlap communication and computation, thus conjoining programming simplicity with performance gains in many application scenarios. We evaluated the framework from a performance perspective, comparing it against hand-tuned OpenCL programs. The results are favourable, indicating that Marrows skeletons are both flexible and efficient in the context of GPU computing.


Bioresource Technology | 2016

Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms

Anna Ribera-Guardia; Ricardo Marques; Corrado Arangio; Mónica Carvalheira; Adrian Oehmen; Maite Pijuan

This study aims at investigating the denitrification kinetics in two separate enriched cultures of denitrifying polyphosphate accumulating organisms (dPAO) and denitrifying glycogen accumulating organisms (dGAO) and compare their N2O accumulation potential under different conditions. Two sequencing batch reactors were inoculated to develop dPAO and dGAO enriched microbial communities separately. Seven batch tests with different combinations of electron acceptors (nitrate, nitrite and/or nitrous oxide) were carried out with the enriched biomass from both reactors. Results indicate that in almost all batch tests, N2O accumulated for both cultures, however dPAOs showed a higher denitrification capacity compared to dGAOs due to their higher nitrogen oxides reduction rates. Additionally, the effect of the simultaneous presence of several electron acceptors in the reduction rates of the different nitrogen oxides was also assessed in dPAOs and dGAOs.


Bioresource Technology | 2013

Propionate addition enhances the biodegradation of the xenobiotic herbicide propanil and its metabolite

Adrian Oehmen; Ricardo Marques; J.P. Noronha; Gilda Carvalho; Maria A.M. Reis

This study investigated ways of stimulating the biodegradation rates of the commonly applied herbicide, 3,4-dichloropropionanilide (propanil), and its metabolite, 3,4-dichloroaniline (DCA), as well as the growth rate of propanil- and DCA-degrading organisms in a mixed culture. Propionate, the other metabolite of propanil, stimulated the specific degradation rates of both propanil and DCA after a brief acclimation period. A metabolic model developed to characterise the metabolism of propanil and DCA biodegradation showed that the efficiency of oxidative phosphorylation (i.e. P/O ratio), which measures the metabolic efficiency, increased over time by 6- to 10-fold. This increase was accompanied by a 5- to 10-fold increase in the propanil and DCA biodegradation degradation rates. The biodegradation rates of the culture were unaffected when using an irrigation water matrix (Tejo river, Portugal), highlighting the utility of the culture for bioaugmentation purposes.


Environmental Science and Pollution Research | 2015

Modelling the biodegradation kinetics of the herbicide propanil and its metabolite 3,4-dichloroaniline

Ricardo Marques; Adrian Oehmen; Gilda Carvalho; Maria A.M. Reis

This study models the biodegradation kinetics of two toxic xenobiotic compounds in enriched mixed cultures: a commonly applied herbicide (3,4-dichloropropionanilide or propanil) and its metabolite (3,4-dichloroaniline or DCA). The dependence of the metabolite degradation kinetics on the presence of the parent compound was investigated, as well as the influence of the feeding operation strategy. Model equations were proposed incorporating substrate inhibition of the parent compound and the metabolite during dump feed operation of a sequencing batch reactor (SBR). The kinetic parameters of the biomass were compared to step feed degradation of the SBR. The relationship between propanil and DCA degradation rates with the concentration of each compound was studied. A statistical comparison was carried out between the model predictions and experimental results. Substrate inhibition by both propanil and DCA was prominent during dump feed operation but insignificant during step feed. With both feeding strategies, the metabolite degradation was found to be dependent on the concentration of both the parent compound and the metabolite, suggesting that the DCA degrading enzymatic activity was independent of the detachment of the propionate moiety from the propanil molecule. After incorporating this finding into the model equations, the model was able to describe well the propanil and DCA degradation profiles, with an r2 correlation >0.95 for each case. A kinetic model was developed for the degradation of the herbicide propanil and its metabolite DCA. An exponential inhibition term was incorporated to describe the substrate inhibition during dump feeding. The kinetics of metabolite degradation was dependent of the sum of the concentrations of metabolite and parent compound, which could also be of relevance to future xenobiotic modelling applications from wastewater.


acm symposium on applied computing | 2014

On the support of task-parallel algorithmic skeletons for multi-GPU computing

Fernando Alexandre; Ricardo Marques; Hervé Paulino

An emerging trend in the field of Graphics Processing Unit (GPU) computing is the harnessing of multiple devices to cope with scalability and performance requirements. However, multi-GPU execution adds new challenges to the already complex world of General Purpose computing on GPUs (GPGPU), such as the efficient problem decomposition, and dealing with device heterogeneity. To this extent, we propose the use of the Marrow algorithmic skeleton framework (ASkF) to abstract most of the details intrinsic to the programming of such platforms. To the best of our knowledge, Marrow is the first ASkF to support skeleton nesting on single and (now) multiple GPU systems. In this paper we present how it can transparently distribute the execution of skeleton compositions among a set of, possibly, heterogeneous devices. An experimental evaluation assesses the proposals effectiveness, from a scalability and performance perspective, with good results.


Environmental Science & Technology | 2014

Novel Microelectrode-Based Online System for Monitoring N2O Gas Emissions during Wastewater Treatment

Ricardo Marques; Adrian Oehmen; Maite Pijuan

Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.


Water Research | 2018

Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes

Ricardo Marques; Anna Ribera-Guardia; Jorge M. Santos; Gilda Carvalho; Maria A.M. Reis; Maite Pijuan; Adrian Oehmen

Denitrifying enhanced biological phosphorus removal (EBPR) systems can be an efficient means of removing phosphate (P) and nitrate (NO3-) with low carbon source and oxygen requirements. Tetrasphaera is one of the most abundant polyphosphate accumulating organisms present in EBPR systems, but their capacity to achieve denitrifying EBPR has not previously been determined. An enriched Tetrasphaera culture, comprising over 80% of the bacterial biovolume was obtained in this work. Despite the denitrification capacity of Tetrasphaera, this culture achieved only low levels of anoxic P-uptake. Batch tests with different combinations of NO3-, nitrite (NO2-) and nitrous oxide (N2O) revealed lower N2O accumulation by Tetrasphaera as compared to Accumulibacter and Competibacter when multiple electron acceptors were added. Electron competition was observed during the addition of multiple nitrogen electron acceptors species, where P uptake appeared to be slightly favoured over glycogen production in these situations. This study increases our understanding of the role of Tetrasphaera-related organisms in denitrifying EBPR systems.


Water Research | 2015

Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.

A. Rodriguez-Caballero; I. Aymerich; Ricardo Marques; Manel Poch; Maite Pijuan

Collaboration


Dive into the Ricardo Marques's collaboration.

Top Co-Authors

Avatar

Adrian Oehmen

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Gilda Carvalho

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Maria A.M. Reis

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

J.P. Noronha

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Fernando Alexandre

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Hervé Paulino

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Jorge M. Santos

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Maite Pijuan

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

R. Salgado

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

A. Rodriguez-Caballero

Catalan Institute for Water Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge