Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ricardo Martinez-Botas is active.

Publication


Featured researches published by Ricardo Martinez-Botas.


SAE International journal of engines | 2014

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

James Turner; A. Popplewell; R. Patel; T.R. Johnson; N. Darnton; Steve Richardson; S. Bredda; R. J. Tudor; C. I. Bithell; R. Jackson; Sarah Remmert; Roger Cracknell; J. Fernandes; Andrew Lewis; Sam Akehurst; Chris Brace; Colin Copeland; Ricardo Martinez-Botas; Alessandro Romagnoli; Alexey Burluka

The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UKs innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization. In order to do this vehicle modelling was employed to set part-load operating points representative of a target vehicle and to provide weighting factors for those points. The engine was sized by using the fuel consumption improvement targets and a series of specification steps designed to ensure that the required full-load performance and driveability could be achieved. The engine was designed in parallel with 1-D modelling which helped to combine the various technology packages of the project, including the specification of an advanced charging system and the provision of the necessary variability in the valvetrain system. An advanced intake port was designed in order to ensure the necessary flow rate and the charge motion to provide fuel mixing and help suppress knock, and was subjected to a full transient CFD analysis. A new engine management system was provided which necessarily had to be capable of controlling many functions, including a supercharger engagement clutch and full bypass system, direct injection system, port-fuel injection system, separately-switchable cam profiles for the intake and exhaust valves and wide-range fast-acting camshaft phasing devices. Testing of the engine was split into two phases. The first usied a test bed Combustion Air Handling Unit to enable development of the combustion system without the complication of a new charging system being fitted to the engine. To set boundary conditions during this part of the programme, heavy reliance was placed on the 1-D simulation. The second phase tested the full engine. The ramifications of realizing the engine design from a V8 basis in terms of residual friction versus the fuel consumption results achieved are also discussed. The final improvement in vehicle fuel economy is demonstrated using a proprietary fuel consumption code, and is presented for the New European Drive Cycle, the FTP-75 cycle and a 120 km/h (75 mph) cruise condition.


Journal of Turbomachinery-transactions of The Asme | 2005

The Pulsating Flow Field in a Mixed Flow Turbocharger Turbine: An Experimental and Computational Study

D. Palfreyman; Ricardo Martinez-Botas

The turbine stage of an automotive pulse system turbocharger is subjected to an unsteady pulsating flow field due to the rapid opening and closing of the reciprocating engine exhaust valves. This leads to a complex and highly disturbed flow field within the delivery volute and turbine passages, which results in an unusual hysteresis type performance characteristic. The aim of this paper is to investigate the flow field within the turbine stage under these representative conditions, using a computational method validated against experimental data. This paper is separated into two sections. The first deals with the validation of the numerical code and modeling approach. A mesh dependency study is undertaken with cell discretization ranging 200,000, 850,000, and 1,750,000 cells, where the accuracy is assessed through comparison with experimental performance and flow field measurements. The second part presents an investigation of the flow field under pulse conditions. Time accurate spectra of turbine performance and flow properties at various locations in the turbine stage are presented, as well as contour plots of velocity within a turbine passage at two critical positions during the pulse period.


International Journal of Engine Research | 2002

MIXED-FLOW TURBINES FOR AUTOMOTIVE TURBOCHARGERS: STEADY AND UNSTEADY PERFORMANCE

N Karamanis; Ricardo Martinez-Botas

Abstract Turbochargers are finding increasing application to automotive diesel engines as cost effective means for improving their power output and efficiency, and reducing exhaust emissions; these requirements have led to the need for highly loaded turbocharger turbines. A mixed-flow turbine is capable of achieving its peak isen-tropic efficiency at reduced velocity ratios compared to a typical radial inflow turbine; it is therefore possible to improve the turbocharger/engine matching. These turbines differ from the commonly used radial turbines in that the flow approaches the rotor in the non-radial direction; in the extreme a mixed-flow turbine would become an axial machine. The steady and unsteady performances of a mixed-flow turbocharger turbine with a constant blade inlet angle have been investigated. The steady flow results indicated that the mixed-flow turbine obtains a peak efficiency (total-to-static) of 75 per cent at a velocity ratio of 0.61, compared with that of a typical radial-inflow turbine which peaks at a velocity ratio of 0.7. The performance and flow characteristics were found to deviate significantly from the equivalent steady state values commonly used in turbocharger turbine design.


Journal of Turbomachinery-transactions of The Asme | 2001

Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions

N. Karamanis; Ricardo Martinez-Botas; C. C. Su

The performance and detailed flow characteristics of a high pressure ratio mixed flow turbine has been investigated under steady and pulsating flow conditions. The rotor has been designed to have a nominal constant incidence (based on free vortex flow in the volute) and it is for use in an automotive high speed diesel turbocharger. The results indicated a departure from the quasi-steady analysis commonly used in turbocharger turbine design. The pulsations from the engine have been followed through the inlet pipe and around the volute; the pulse has been shown to propagate close to the speed of sound and not according to the bulk flow velocity as stated by some researchers. The flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0 mm ahead of the rotor leading edge and 9.5 mm behind the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at 29,400 and 41,300 rpm. The results were resolved in a blade-to-blade sense to examine in greater detail the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been shown. The unsteady flow characteristics have been investigated at two flow pulse frequencies, corresponding to internal combustion engine speeds of 1600 and 2400 rpm. Four measurement planes have been investigated: one in the pipe feeding the volute, two in the volute (40 deg and 130 deg downstream of the tongue) and one at the exit of the turbine. The pulse propagation at these planes has been investigated; the effect of the different planes on the evaluation of the unsteady isentropic efficiency is shown to be significant. Overall, the unsteady performance efficiency results indicated a significant departure from the corresponding steady performance, in accordance with the inlet and exit flow measurements.


ASME Turbo Expo 2005: Power for Land, Sea, and Air | 2005

Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions

S. Szymko; Ricardo Martinez-Botas; Keith Robert Pullen

The steady and pulsating performance results of a turbocharger mixed-flow turbine are presented. The results are taken at an equivalent speed of 70% (42,000rpm) for a pulse frequency range of 20 to 80 Hz. All instantaneous parameters required for unsteady performance evaluation are measured and discussed. Significant improvements to the measurement of instantaneous actual power have been carried out. Large variations in the operating point of the turbine occur in each pulse cycle, a velocity ratio range of 0.43 to 1.28 is seen for a 20 Hz pulse, this range reduces as the pulse frequency increases and unsteady effects become more prominent. During periods of turbine freewheeling, negative efficiencies can arise due to momentum transfer from the turbine to the working gas, although detrimental to the efficiency the energy content in these regimes are low. The use of a modified Strouhal number (MSt.) and a pressure modified Strouhal number (PMSt.) has proved useful in assessing when the onset of unsteadiness of the flow will become significant, a value of 0.1 has been used as an appropriate limit to steadiness. The results suggest that for a typical engine speed range the rotor may be considered quasi-steady whilst the turbine stage is predominately operating in an unsteady regime. Inference from the experimental data would suggest it is adequate to capture the performance of a turbine under pulsating flow using a ‘quasi-steady’ model when the MSt. < 0.1, and a ‘filling and emptying’ code when a PMSt. < 0.1 and above this value a ‘wave action’ model is more appropriate.Copyright


Journal of Turbomachinery-transactions of The Asme | 2011

Comparison Between Steady and Unsteady Double-Entry Turbine Performance Using the Quasi-Steady Assumption

Colin Copeland; Ricardo Martinez-Botas; Martin Seiler

The experimental performance evaluation of a circumferentially divided, double-entry turbocharger turbine is presented in this paper with the aim of understanding the influence of pulsating flow. By maintaining a constant speed but varying the frequency of the pulses, the influence of frequency was shown to play an important role in the performance of the turbine. A trend of decreasing cycle-averaged efficiency at lower frequencies was measured. One of the principal objectives was to assess the degree to which the unsteady performance differs from the quasi-steady assumption. In order to make the steady-unsteady comparison for a multiple entry turbine, a wide set of steady equal and unequal admission flow conditions were tested. The steady state data was then interpolated as a function of three, non-dimensional parameters in order to allow a point-by-point comparison with the instantaneous unsteady operation. As an average, the quasi-steady assumption generally under-predicted the mass flow and efficiency loss through the turbine, albeit the differences were reduced as the frequency increased. Out-of-phase pulsations produced unsteady operating orbits that corresponded to a significant steady state, partial admission loss, and this was reflected as a drop in the quasi-steady efficiency. However, these differences between quasi-steady in-phase and out-of-phase predictions were not replicated in the measured results, suggesting that the unequal admission loss is not as significant in pulsating flow as it is in steady flow.


ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition | 1995

Performance of a Mixed Flow Turbocharger Turbine Under Pulsating Flow Conditions

C. Arcoumanis; I. Hakeem; L. Khezzar; Ricardo Martinez-Botas; N. C. Baines

The performance of a high pressure ratio (P.R.=2.9) mixed flow turbine for an automotive turbocharger has been investigated and the results revealed its better performance relative to a radial-inflow geometry under both steady and pulsating flow conditions. The advantages offered by the constant blade angle rotor allow better turbocharger-engine matching and maximization of the energy extracted from the pulsating engine exhaust gases. In particular, the mixed inlet blade geometry resulted in high efficiency at high expansion ratios where the engine-exhaust pulse energy is maximum. The efficiency characteristics of the mixed flow turbine under steady conditions were found to be fairly uniform when plotted against the velocity ratio, with a peak efficiency at the design speed of 0.75. The unsteady performance as indicated by the mass-averaged total-to-static efficiency and the swallowing capacity exhibited a departure from the quasi-steady assumption which is analysed and discussed.Copyright


Journal of Turbomachinery-transactions of The Asme | 2012

Unsteady Performance of a Double Entry Turbocharger Turbine With a Comparison to Steady Flow Conditions

Colin Copeland; Ricardo Martinez-Botas; Martin Seiler

Circumferentially divided, double entry turbocharger turbines are designed with a dividing wall parallel to the machine axis such that each entry feeds a separate 180 deg section of the nozzle circumference prior to entry into the rotor. This allows the exhaust pulses originating from the internal combustion exhaust to be preserved. Since the turbine is fed by two separate unsteady flows, the phase difference between the exhaust pulses entering the turbine rotor will produce a momentary imbalance in the flow conditions around the periphery of the turbine rotor. This research seeks to provide new insight into the impact of unsteadiness on turbine performance. The discrepancy between the pulsed flow behavior and that predicted by a typical steady flow performance map is a central issue considered in this work. In order to assess the performance deficit attributable to unequal admission, the steady flow conditions introduced in one inlet were varied with respect to the other. The results from these tests were then compared with unsteady, in-phase and out-of-phase pulsed flows most representative of the actual engine operating condition.


Journal of Turbomachinery-transactions of The Asme | 2011

Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission

Aaron W. Costall; Robert McDavid; Ricardo Martinez-Botas; Nicholas C. Baines

The pulsating nature of gas flow within the exhaust manifold of an internal combustion engine is not well captured by the quasi-steady techniques typically employed by cycle simulation programs for turbocharger modeling. This problem is compounded by the unequal admission conditions imposed on the turbine by the use of multiple entry housings installed as standard on pulse turbocharged diesel engines. This unsteady behavior presents the simulation engineer with a unique set of difficulties when modeling turbocharger turbines. It is common for experienced analysts to accommodate multiple entries by splitting the flow across duplicate components and by tuning the level of interference between volute entries but this necessarily bespoke approach is limited to upstream modifications that cannot capture true turbine unsteady operation. This paper describes recent simulation code development work undertaken at Caterpillar to improve machine submodel accuracy essential for virtual product development meeting U.S. nonroad Tier 4 emission standards. The resulting turbine performance model has been validated against experimental data for a twin entry turbocharger suitable for heavy duty nonroad applications, obtained using a permanent magnet eddy-current dynamometer and pulse flow test facility. Comparison between experiment and prediction demonstrates good agreement under full admission in terms of both instantaneous flow capacity and turbine actual power although unequal admission results indicate the need for further model development.


Journal of Turbomachinery-transactions of The Asme | 2008

Mixed Flow Turbine Research: A Review

Srithar Rajoo; Ricardo Martinez-Botas

Research on mixed flow turbines spans over 50 years with substantial literature available in the public domain. Mixed flow turbines were initially used as an alternative rotor design for gas turbines and later extended to automotive turbocharger applications. The characteristics of a mixed flow turbine resemble a radial turbine but with some significant performance improvements, giving this design an edge to satisfy the ever increasing demand in the automotive sector. The initial research focus was mainly experimental but in recent years, there have been significant contributions in computational analysis. This paper is intended to provide readers with a comprehensive review of the past and present research, into the design, performance, and use of mixedflow turbines. Additionally, the future research direction of the mixed flow turbine is discussed in view of the current turbocharger and automotive demand.

Collaboration


Dive into the Ricardo Martinez-Botas's collaboration.

Top Co-Authors

Avatar

Srithar Rajoo

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Alessandro Romagnoli

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Srithar Rajoo

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Meng Soon Chiong

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Peter Newton

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

M. H. Padzillah

Universiti Teknologi Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge