Riccardo Aiese Cigliano
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Riccardo Aiese Cigliano.
The Plant Cell | 2015
Riccardo Aversano; Felice Contaldi; Maria Raffaella Ercolano; Valentina Grosso; Massimo Iorizzo; Filippo Tatino; Luciano Xumerle; Alessandra Dal Molin; C. Avanzato; Alberto Ferrarini; Massimo Delledonne; Walter Sanseverino; Riccardo Aiese Cigliano; Salvador Capella-Gutiérrez; Toni Gabaldón; Luigi Frusciante; James M. Bradeen; Domenico Carputo
The draft genome and transcriptome sequences of the wild potato species S. commersonii demonstrate the usefulness of genome sequences from wild relatives for elucidating evolutionary mechanisms contributing to Solanum species diversity and understanding changes in response to cold. Here, we report the draft genome sequence of Solanum commersonii, which consists of ∼830 megabases with an N50 of 44,303 bp anchored to 12 chromosomes, using the potato (Solanum tuberosum) genome sequence as a reference. Compared with potato, S. commersonii shows a striking reduction in heterozygosity (1.5% versus 53 to 59%), and differences in genome sizes were mainly due to variations in intergenic sequence length. Gene annotation by ab initio prediction supported by RNA-seq data produced a catalog of 1703 predicted microRNAs, 18,882 long noncoding RNAs of which 20% are shown to target cold-responsive genes, and 39,290 protein-coding genes with a significant repertoire of nonredundant nucleotide binding site-encoding genes and 126 cold-related genes that are lacking in S. tuberosum. Phylogenetic analyses indicate that domesticated potato and S. commersonii lineages diverged ∼2.3 million years ago. Three duplication periods corresponding to genome enrichment for particular gene families related to response to salt stress, water transport, growth, and defense response were discovered. The draft genome sequence of S. commersonii substantially increases our understanding of the domesticated germplasm, facilitating translation of acquired knowledge into advances in crop stability in light of global climate and environmental changes.
Nucleic Acids Research | 2016
Andreu Paytuví Gallart; Antonio Hermoso Pulido; Irantzu Anzar Martínez de Lagrán; Walter Sanseverino; Riccardo Aiese Cigliano
Long non-coding RNAs (lncRNAs) are functional non-translated molecules greater than 200 nt. Their roles are diverse and they are usually involved in transcriptional regulation. LncRNAs still remain largely uninvestigated in plants with few exceptions. Experimentally validated plant lncRNAs have been shown to regulate important agronomic traits such as phosphate starvation response, flowering time and interaction with symbiotic organisms, making them of great interest in plant biology and in breeding. There is still a lack of lncRNAs in most sequenced plant species, and in those where they have been annotated, different methods have been used, so making the lncRNAs less useful in comparisons within and between species. We developed a pipeline to annotate lncRNAs and applied it to 37 plant species and six algae, resulting in the annotation of more than 120 000 lncRNAs. To facilitate the study of lncRNAs for the plant research community, the information gathered is organised in the Green Non-Coding Database (GreeNC, http://greenc.sciencedesigners.com/).
BMC Genomics | 2013
Riccardo Aiese Cigliano; Walter Sanseverino; Gaetana Cremona; Maria Raffaella Ercolano; Clara Conicella; Federica Consiglio
BackgroundHistone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy.ResultsBased on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits.ConclusionsIn this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.
Plant Physiology | 2013
Riccardo Aiese Cigliano; Gaetana Cremona; Rosa Paparo; Pasquale Termolino; Giorgio Perrella; Ruben Gutzat; Maria Federica Consiglio; Clara Conicella
AtHDA7 is essential for female gametophyte development and embryogenesis in Arabidopsis. Histone modifications are involved in the regulation of many processes in eukaryotic development. In this work, we provide evidence that AtHDA7, a HISTONE DEACETYLASE (HDAC) of the Reduced Potassium Dependency3 (RPD3) superfamily, is crucial for female gametophyte development and embryogenesis in Arabidopsis (Arabidopsis thaliana). Silencing of AtHDA7 causes degeneration of micropylar nuclei at the stage of four-nucleate embryo sac and delay in the progression of embryo development, thereby bringing the seed set down in the Athda7-2 mutant. Furthermore, AtHDA7 down- and up-regulation lead to a delay of growth in postgermination and later developmental stages. The Athda7-2 mutation that induces histone hyperacetylation significantly increases the transcription of other HDACs (AtHDA6 and AtHDA9). Moreover, silencing of AtHDA7 affects the expression of ARABIDOPSIS HOMOLOG OF SEPARASE (AtAESP), previously demonstrated to be involved in female gametophyte and embryo development. However, chromatin immunoprecipitation analysis with acetylated H3 antibody provided evidence that the acetylation levels of H3 at AtAESP and HDACs does not change in the mutant. Further investigations are essential to ascertain the mechanism by which AtHDA7 affects female gametophyte and embryo development.
Scientific Reports | 2017
Pasquale Luca Curci; Riccardo Aiese Cigliano; Diana L. Zuluaga; Michela Janni; Walter Sanseverino; Gabriella Sonnante
Nitrogen (N) is a key macronutrient representing a limiting factor for plant growth and development and affects productivity in wheat. In this study, durum wheat response to N chronic starvation during grain filling was investigated through a transcriptomic approach in roots, leaves/stems, flag leaf and spikes of cv. Svevo. Nitrogen stress negatively influenced plant height, tillering, flag leaf area, spike and seed traits, and total N content. RNA-seq data revealed 4,626 differentially expressed genes (DEGs). Most transcriptomic changes were observed in roots, with 3,270 DEGs, while 963 were found in leaves/stems, 470 in flag leaf, and 355 in spike tissues. A total of 799 gene ontology (GO) terms were identified, 180 and 619 among the upregulated and downregulated genes, respectively. Among the most addressed GO categories, N compound metabolism, carbon metabolism, and photosynthesis were mostly represented. Interesting DEGs, such as N transporters, genes involved in N assimilation, along with transcription factors, protein kinases and other genes related to stress were highlighted. These results provide valuable information about the transcriptomic response to chronic N stress in durum wheat, which could be useful for future improvement of N use efficiency.
Journal of Experimental Botany | 2016
Luis Matías-Hernández; Andrea Elizabeth Aguilar-Jaramillo; Riccardo Aiese Cigliano; Walter Sanseverino; Soraya Pelaz
Gibberellins (GAs) and cytokinins (CKs) are plant hormones that act either synergistically or antagonistically during the regulation of different developmental processes. In Arabidopsis thaliana, GAs and CKs overlap in the positive regulation of processes such as the transition from the vegetative to the reproductive phase and the development of epidermal adaxial trichomes. Despite the fact that both developmental processes originate in the rosette leaves, they occur separately in time and space. Here we review how, as genetic and molecular mechanisms are being unraveled, both processes might be closely related. Additionally, this shared genetic network is not only dependent on GA and CK hormone signaling but is also strictly controlled by specific clades of transcription factor families. Some key flowering genes also control other rosette leaf developmental processes such as adaxial trichome formation. Conversely, most of the trichome activator genes, which belong to the MYB, bHLH and C2H2 families, were found to positively control the floral transition. Furthermore, three MADS floral organ identity genes, which are able to convert leaves into floral structures, are also able to induce trichome proliferation in the flower. These data lead us to propose that the spatio-temporal regulation and integration of diverse signals control different developmental processes, such as floral induction and trichome formation, which are intimately connected through similar genetic pathways.
Scientific Reports | 2015
F. Javier Cabañes; Walter Sanseverino; G. Castellá; M. Rosa Bragulat; Riccardo Aiese Cigliano; Armand Sánchez
In microorganisms, Ion Torrent sequencing technology has been proved to be useful in whole-genome sequencing of bacterial genomes (5 Mbp). In our study, for the first time we used this technology to perform a resequencing approach in a whole fungal genome (36 Mbp), a non-ochratoxin A producing strain of Aspergillus carbonarius. Ochratoxin A (OTA) is a potent nephrotoxin which is found mainly in cereals and their products, but it also occurs in a variety of common foods and beverages. Due to the fact that this strain does not produce OTA, we focused some of the bioinformatics analyses in genes involved in OTA biosynthesis, using a reference genome of an OTA producing strain of the same species. This study revealed that in the atoxigenic strain there is a high accumulation of nonsense and missense mutations in several genes. Importantly, a two fold increase in gene mutation ratio was observed in PKS and NRPS encoding genes which are suggested to be involved in OTA biosynthesis.
Scientific Reports | 2016
Cristian Forestan; Riccardo Aiese Cigliano; Silvia Farinati; Alice Lunardon; Walter Sanseverino; Serena Varotto
Plant’s response and adaptation to abiotic stresses involve sophisticated genetic and epigenetic regulatory systems. To obtain a global view of molecular response to osmotic stresses, including the non-coding portion of genome, we conducted a total leaf transcriptome analysis on maize plants subjected to prolonged drought and salt stresses. Stress application to both B73 wild type and the epiregulator mutant rpd1-1/rmr6 allowed dissection of the epigenetic component of stress response. Coupling total RNA-Seq and transcriptome re-assembly we annotated thousands of new maize transcripts, together with 13,387 lncRNAs that may play critical roles in regulating gene expression. Differential expression analysis revealed hundreds of genes modulated by long-term stress application, including also many lncRNAs and transposons specifically induced by stresses. The amplitude and dynamic of the stress-modulated gene sets are very different between B73 and rpd1-1/rmr6 mutant plants, as result of stress-like effect on genome regulation caused by the mutation itself, which activates many stress-related genes even in control condition. The analyzed extensive set of total RNA-Seq data, together with the improvement of the transcriptome and the identification of the non-coding portion of the transcriptome give a revealing insight into the genetic and epigenetic mechanism responsible for maize molecular response to abiotic stresses.
BMC Evolutionary Biology | 2011
Riccardo Aiese Cigliano; Walter Sanseverino; Gaetana Cremona; Federica Consiglio; Clara Conicella
BackgroundPolyploidy has long been recognized as playing an important role in plant evolution. In flowering plants, the major route of polyploidization is suggested to be sexual through gametes with somatic chromosome number (2n). Parallel Spindle1 gene in Arabidopsis thaliana (AtPS1) was recently demonstrated to control spindle orientation in the 2nd division of meiosis and, when mutated, to induce 2n pollen. Interestingly, AtPS1 encodes a protein with a FHA domain and PINc domain putatively involved in RNA decay (i.e. Nonsense Mediated mRNA Decay). In potato, 2n pollen depending on parallel spindles was described long time ago but the responsible gene has never been isolated. The knowledge derived from AtPS1 as well as the availability of genome sequences makes it possible to isolate potato PSLike (PSL) and to highlight the evolution of PSL family in plants.ResultsOur work leading to the first characterization of PSLs in potato showed a greater PSL complexity in this species respect to Arabidopsis thaliana. Indeed, a genomic PSL locus and seven cDNAs affected by alternative splicing have been cloned. In addition, the occurrence of at least two other PSL loci in potato was suggested by the sequence comparison of alternatively spliced transcripts.Phylogenetic analysis on 20 Viridaeplantae showed the wide distribution of PSLs throughout the species and the occurrence of multiple copies only in potato and soybean.The analysis of PSLFHA and PSLPINc domains evidenced that, in terms of secondary structure, a major degree of variability occurred in PINc domain respect to FHA. In terms of specific active sites, both domains showed diversification among plant species that could be related to a functional diversification among PSL genes. In addition, some specific active sites were strongly conserved among plants as supported by sequence alignment and by evidence of negative selection evaluated as difference between non-synonymous and synonymous mutations.ConclusionsIn this study, we highlight the existence of PSLs throughout Viridaeplantae, from mosses to higher plants. We provide evidence that PSLs occur mostly as singleton in the analyzed genomes except in soybean and potato both characterized by a recent whole genome duplication event. In potato, we suggest the candidate PSL gene having a role in 2n pollen that should be deeply investigated.We provide useful insight into evolutionary conservation of FHA and PINc domains throughout plant PSLs which suggest a fundamental role of these domains for PSL function.
DNA Research | 2016
Valentino Ruggieri; Irantzu Anzar; Andreu Paytuvi; Roberta Calafiore; Riccardo Aiese Cigliano; Walter Sanseverino; Amalia Barone
Abstract The recent development of Sequence Capture methodology represents a powerful strategy for enhancing data generation to assess genetic variation of targeted genomic regions. Here, we present SUPER-CAP, a bioinformatics web tool aimed at handling Sequence Capture data, fine calculating the allele frequency of variations and building genotype-specific sequence of captured genes. The dataset used to develop this in silico strategy consists of 378 loci and related regulative regions in a collection of 44 tomato landraces. About 14,000 high-quality variants were identified. The high depth (>40×) of coverage and adopting the correct filtering criteria allowed identification of about 4,000 rare variants and 10 genes with a different copy number variation. We also show that the tool is capable to reconstruct genotype-specific sequences for each genotype by using the detected variants. This allows evaluating the combined effect of multiple variants in the same protein. The architecture and functionality of SUPER-CAP makes the software appropriate for a broad set of analyses including SNP discovery and mining. Its functionality, together with the capability to process large data sets and efficient detection of sequence variation, makes SUPER-CAP a valuable bioinformatics tool for genomics and breeding purposes.