Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riccardo Basosi is active.

Publication


Featured researches published by Riccardo Basosi.


Journal of Inorganic Biochemistry | 1996

An electron spin resonance study and antimicrobial activity of copper(II)-phenanthroline complexes

Maria Antonietta Zoroddu; S Zanetti; Rebecca Pogni; Riccardo Basosi

The antimicrobial activities of some copper(II) binary complexes with unsubstituted and different substituted phenanthroline ligands were investigated. A considerable increase in the biocidal activity of the ligands on being coordinated with the copper(II) ions was observed in terms of their minimum inhibitory concentration (MIC) values. EPR measurements were performed at room and low temperature with the aim of gaining an insight into the structure/activity relationship of these complexes. Subtle differences in the chemical arrangement result in appreciable differences in the antimicrobial activity. Copper(II) complexes with 2,9-dimethyl derivative phenanthrolines were observed to be more active against Staphylococcus aureus and Escherichia coli.


Free Radical Research | 2003

Antioxidant Activity of Galloyl Quinic Derivatives Isolated from P. lentiscus Leaves

Maria Camilla Baratto; Massimiliano Tattini; Carlotta Galardi; Patrizia Pinelli; Annalisa Romani; Francesco Visioli; Riccardo Basosi; Rebecca Pogni

The antioxidant properties of galloyl quinic derivatives isolated from Pistacia lentiscus L. leaves have been investigated by means of Electron Paramagnetic Resonance spectroscopy (EPR) and UV-Vis spectrophotometry. Antioxidant properties have been also estimated using the biologically relevant LDL test. The scavenger activities of gallic acid, 5- O -galloyl, 3,5- O -digalloyl, 3,4,5- O -trigalloyl quinic acid derivatives, have been estimated against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide ( O 2 m ) radical, and hydroxyl (OH) radical. On the whole, the scavenger activity raised as the number of galloyl groups on the quinic acid skeleton increased. The half-inhibition concentrations (IC 50 ) of di- and tri-galloyl derivatives did not exceed 30 w M for all the tested free radicals. All the tested metabolites strongly reduced the oxidation of low-density lipoproteins (LDL), following a trend similar to that observed for the scavenger ability against OH radical.


Journal of Biological Chemistry | 2006

A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii - A combined multifrequency EPR and density functional theory study

Rebecca Pogni; M. Camilla Baratto; Christian Teutloff; Stefania Giansanti; Francisco J. Ruiz-Dueñas; Thomas Choinowski; Klaus Piontek; Ángel T. Martínez; Friedhelm Lendzian; Riccardo Basosi

Versatile peroxidases are heme enzymes that combine catalytic properties of lignin peroxidases and manganese peroxidases, being able to oxidize Mn2+ as well as phenolic and non-phenolic aromatic compounds in the absence of mediators. The catalytic process (initiated by hydrogen peroxide) is the same as in classical peroxidases, with the involvement of 2 oxidizing equivalents and the formation of the so-called Compound I. This latter state contains an oxoferryl center and an organic cation radical that can be located on either the porphyrin ring or a protein residue. In this study, a radical intermediate in the reaction of versatile peroxidase from the ligninolytic fungus Pleurotus eryngii with H2O2 has been characterized by multifrequency (9.4 and 94 GHz) EPR and assigned to a tryptophan residue. Comparison of experimental data and density functional theory theoretical results strongly suggests the assignment to a tryptophan neutral radical, excluding the assignment to a tryptophan cation radical or a histidine radical. Based on the experimentally determined side chain orientation and comparison with a high resolution crystal structure, the tryptophan neutral radical can be assigned to Trp164 as the site involved in long-range electron transfer for aromatic substrate oxidation.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An artificial molecular switch that mimics the visual pigment and completes its photocycle in picoseconds

Adalgisa Sinicropi; Elena Martin; Mikhail N. Ryazantsev; Jan Helbing; Julien Briand; Divya Sharma; Jérémie Léonard; Stefan Haacke; Andrea Cannizzo; Majed Chergui; Vinicio Zanirato; Stefania Fusi; Fabrizio Santoro; Riccardo Basosi; Nicolas Ferré; Massimo Olivucci

Single molecules that act as light-energy transducers (e.g., converting the energy of a photon into atomic-level mechanical motion) are examples of minimal molecular devices. Here, we focus on a molecular switch designed by merging a conformationally locked diarylidene skeleton with a retinal-like Schiff base and capable of mimicking, in solution, different aspects of the transduction of the visual pigment Rhodopsin. Complementary ab initio multiconfigurational quantum chemistry-based computations and time-resolved spectroscopy are used to follow the light-induced isomerization of the switch in methanol. The results show that, similar to rhodopsin, the isomerization occurs on a 0.3-ps time scale and is followed by <10-ps cooling and solvation. The entire (2-photon-powered) switch cycle was traced by following the evolution of its infrared spectrum. These measurements indicate that a full cycle can be completed within 20 ps.


Journal of Inorganic Biochemistry | 2000

EPR characterization of mono(thiosemicarbazones) copper(II) complexes. Note II

Rebecca Pogni; Maria Camilla Baratto; Alicia Diaz; Riccardo Basosi

Copper(II) complexes with thiosemicarbazones have been shown to be more active in cell destruction, in the inhibition of DNA synthesis than the uncomplexed ligand. Several derivatives of thiosemicarbazones and their iron and copper complexes have been studied for their cytotoxicity and inhibiting activity against DNA synthesis. In the present work complexes formed in H2O-DMSO solution between copper(II) and the acetophenone thiosemicarbazone (ATSC) and the o-aminobenzaldehyde thiosemicarbazone (o-NH2TSC) have been studied. EPR studies have been performed at different pH values and metal-to-ligand ratios. The spectra have been recorded at both room (298 K) and low temperatures (120 K). A possible relationship between structure and activity is attempted on the basis of the EPR data.


Journal of Biological Chemistry | 2009

Protein Radicals in Fungal Versatile Peroxidase CATALYTIC TRYPTOPHAN RADICAL IN BOTH COMPOUND I AND COMPOUND II AND STUDIES ON W164Y, W164H, AND W164S VARIANTS

Francisco J. Ruiz-Dueñas; Rebecca Pogni; María Morales; Stefania Giansanti; María J. Maté; Antonio A. Romero; María Jesús Martínez; Riccardo Basosi; Ángel T. Martínez

Lignin-degrading peroxidases, a group of biotechnologically interesting enzymes, oxidize high redox potential aromatics via an exposed protein radical. Low temperature EPR of Pleurotus eryngii versatile peroxidase (VP) revealed, for the first time in a fungal peroxidase, the presence of a tryptophanyl radical in both the two-electron (VPI) and the one-electron (VPII) activated forms of the enzyme. Site-directed mutagenesis was used to substitute this tryptophan (Trp-164) by tyrosine and histidine residues. No changes in the crystal structure were observed, indicating that the modified behavior was due exclusively to the mutations introduced. EPR revealed the formation of tyrosyl radicals in both VPI and VPII of the W164Y variant. However, no protein radical was detected in the W164H variant, whose VPI spectrum indicated a porphyrin radical identical to that of the inactive W164S variant. Stopped-flow spectrophotometry showed that the W164Y mutation reduced 10-fold the apparent second-order rate constant for VPI reduction (k2app) by veratryl alcohol (VA), when compared with over 50-fold reduction in W164S, revealing some catalytic activity of the tyrosine radical. Its first-order rate constant (k2) was more affected than the dissociation constant (KD2). Moreover, VPII reduction by VA was impaired by the above mutations, revealing that the Trp-164 radical was involved in catalysis by both VPI and VPII. The low first-order rate constant (k3) values were similar for the W164Y, W164H, and W164S variants, indicating that the tyrosyl radical in VPII was not able to oxidize VA (in contrast with that observed for VPI). VPII self-reduction was also suppressed, revealing that Trp-164 is involved in this autocatalytic process.


Journal of Inorganic Biochemistry | 1999

EPR and O2· — scavenger activity: Cu(II)—peptide complexes as superoxide dismutase models

Rebecca Pogni; Maria Camilla Baratto; Elena Busi; Riccardo Basosi

Several copper(II) complexes with aminoacids and peptides are known to show superoxide dismutase (SOD)-like activity. EPR spectroscopy has proved to be a useful tool for studying the complex equilibria of the copper(II) ion and various ligands of biological importance in solution. In the present work, a variety of copper(II) complexes with di-, tri- and tetra-peptides containing only glycine residues (GG, GGG and GGGG) and others containing a histidyl residue in different positions (HGG, GHG, GGH and GGHG) have been investigated. EPR parameters obtained by extensive use of computer simulation of spectra lead to reliable spin Hamiltonian EPR parameters at both room temperature and in frozen solution. The molecular orbital coefficients computed from the anisotropic EPR data and the d-d electronic energies are used to characterize different arrangements of the complexes. Estimation of the scavenger activity of the complexes due to the particular environment created by the ligands around copper is discussed in the frame of the structure-activity relationship.


Journal of the American Chemical Society | 2010

Modeling, Preparation, and Characterization of a Dipole Moment Switch Driven by Z/E Photoisomerization

Alfonso Melloni; Riccardo Rossi Paccani; Donato Donati; Vinicio Zanirato; Adalgisa Sinicropi; Maria Laura Parisi; Elena Martin; Mikhail N. Ryazantsev; Wan Jian Ding; Luis Manuel Frutos; Riccardo Basosi; Stefania Fusi; Loredana Latterini; Nicolas Ferré; Massimo Olivucci

We report the results of a multidisciplinary research effort where the methods of computational photochemistry and retrosynthetic analysis/synthesis have contributed to the preparation of a novel N-alkylated indanylidene-pyrroline Schiff base featuring an exocyclic double bond and a permanent zwitterionic head. We show that, due to its large dipole moment and efficient photoisomerization, such a system may constitute the prototype of a novel generation of electrostatic switches achieving a reversible light-induced dipole moment change on the order of 30 D. The modeling of a peptide fragment incorporating the zwitterionic head into a conformationally rigid side chain shows that the switch can effectively modulate the fluorescence of a tryptophan probe.


Journal of Chemical Theory and Computation | 2014

Excited State Geometries and Vertical Emission Energies of Solvated Dyes for DSSC: A PCM/TD-DFT Benchmark Study

Caterina Bernini; Lorenzo Zani; Massimo Calamante; Gianna Reginato; Alessandro Mordini; Maurizio Taddei; Riccardo Basosi; Adalgisa Sinicropi

The ability of Time-Dependent Density Functional Theory (TD-DFT) to provide excited state geometries and reproduce emission energies of organic D-π-A dyes designed for DSSC applications is evaluated. The performance of six functionals (CAM-B3LYP, MPW1K, ωB97X-D, LC-BLYP, LC-ωPBE, and M06-HF) in combination with three basis sets (cc-pVDZ, 6-31+G(d,p), and 6-311+G(2d,p)) has been analyzed. Solvent effects have been taken into account by means of a Polarizable Continuum Model in both LR and SS formalisms. Our LR-PCM/TD-DFT results show that accurate emission energies are obtained only when solvent effects are included in the computation of excited state geometries and when a range separated hybrid functional is used. Vertical emission energies are reproduced with a mean absolute error of at most 0.2 eV. The accuracy is further improved using the SS-PCM formalism.


Journal of Biological Chemistry | 2011

Crystallographic, Kinetic, and Spectroscopic Study of the First Ligninolytic Peroxidase Presenting a Catalytic Tyrosine

Yuta Miki; Fabiola R. Calviño; Rebecca Pogni; Stefania Giansanti; Francisco J. Ruiz-Dueñas; María Jesús Martínez; Riccardo Basosi; Antonio A. Romero; Ángel T. Martínez

Trametes cervina lignin peroxidase (LiP) is a unique enzyme lacking the catalytic tryptophan strictly conserved in all other LiPs and versatile peroxidases (more than 30 sequences available). Recombinant T. cervina LiP and site-directed variants were investigated by crystallographic, kinetic, and spectroscopic techniques. The crystal structure shows three substrate oxidation site candidates involving His-170, Asp-146, and Tyr-181. Steady-state kinetics for oxidation of veratryl alcohol (the typical LiP substrate) by variants at the above three residues reveals a crucial role of Tyr-181 in LiP activity. Moreover, assays with ferrocytochrome c show that its ability to oxidize large molecules (a requisite property for oxidation of the lignin polymer) originates in Tyr-181. This residue is also involved in the oxidation of 1,4-dimethoxybenzene, a reaction initiated by the one-electron abstraction with formation of substrate cation radical, as described for the well known Phanerochaete chrysosporium LiP. Detailed spectroscopic and kinetic investigations, including low temperature EPR, show that the porphyrin radical in the two-electron activated T. cervina LiP is unstable and rapidly receives one electron from Tyr-181, forming a catalytic protein radical, which is identified as an H-bonded neutral tyrosyl radical. The crystal structure reveals a partially exposed location of Tyr-181, compatible with its catalytic role, and several neighbor residues probably contributing to catalysis: (i) by enabling substrate recognition by aromatic interactions; (ii) by acting as proton acceptor/donor from Tyr-181 or H-bonding the radical form; and (iii) by providing the acidic environment that would facilitate oxidation. This is the first structure-function study of the only ligninolytic peroxidase described to date that has a catalytic tyrosine.

Collaboration


Dive into the Riccardo Basosi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franco Ruzzenenti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge