Riccardo Cristofani
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Riccardo Cristofani.
Philosophical Transactions of the Royal Society B | 2013
Serena Carra; Paola Rusmini; Valeria Crippa; Elisa Giorgetti; Alessandra Boncoraglio; Riccardo Cristofani; Maximillian Naujock; Melanie Meister; Melania Minoia; Harm H. Kampinga; Angelo Poletti
The family of the mammalian small heat-shock proteins consists of 10 members (sHSPs/HSPBs: HSPB1–HSPB10) that all share a highly conserved C-terminal alpha-crystallin domain, important for the modulation of both their structural and functional properties. HSPB proteins are biochemically classified as molecular chaperones and participate in protein quality control, preventing the aggregation of unfolded or misfolded proteins and/or assisting in their degradation. Thus, several members of the HSPB family have been suggested to be protective in a number of neurodegenerative and neuromuscular diseases that are characterized by protein misfolding. However, the pro-refolding, anti-aggregation or pro-degradative properties of the various members of the HSPB family differ largely, thereby influencing their efficacy and protective functions. Such diversity depends on several factors, including biochemical and physical properties of the unfolded/misfolded client, the expression levels and the subcellular localization of both the chaperone and the client proteins. Furthermore, although some HSPB members are inefficient at inhibiting protein aggregation, they can still exert neuroprotective effects by other, as yet unidentified, manners; e.g. by maintaining the proper cellular redox state or/and by preventing the activation of the apoptotic cascade. Here, we will focus our attention on how the differences in the activities of the HSPB proteins can influence neurodegenerative and neuromuscular disorders characterized by accumulation of aggregate-prone proteins. Understanding their mechanism of action may allow us to target a specific member in a specific cell type/disease for therapeutic purposes.
Journal of Biological Chemistry | 2016
Massimiliano Ruscica; Chiara Ricci; Chiara Macchi; Paolo Magni; Riccardo Cristofani; Jingwen Liu; Alberto Corsini; Nicola Ferri
The suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway activated by proinflammatory cytokines, including the tumor necrosis factor-α (TNF-α). SOCS3 is also implicated in hypertriglyceridemia associated to insulin resistance. Proprotein convertase subtilisin kexin type 9 (PCSK9) levels are frequently found to be positively correlated to insulin resistance and plasma very low density lipoprotein (VLDL) triglycerides concentrations. The present study aimed to investigate the possible role of TNF-α and JAK/STAT pathway on de novo lipogenesis and PCSK9 expression in HepG2 cells. TNF-α induced both SOCS3 and PCSK9 in a concentration-dependent manner. This effect was inhibited by transfection with siRNA anti-STAT3, suggesting the involvement of the JAK/STAT pathway. Retroviral overexpression of SOCS3 in HepG2 cells (HepG2SOCS3) strongly inhibited STAT3 phosphorylation and induced PCSK9 mRNA and protein, with no effect on its promoter activity and mRNA stability. Consistently, siRNA anti-SOCS3 reduced PCSK9 mRNA levels, whereas an opposite effect was observed with siRNA anti-STAT3. In addition, HepG2SOCS3 express higher mRNA levels of key enzymes involved in the de novo lipogenesis, such as fattyacid synthase, stearoyl-CoA desaturase (SCD)-1, and apoB. These responses were associated with a significant increase of SCD-1 protein, activation of sterol regulatory element-binding protein-1c (SREBP-1), accumulation of cellular triglycerides, and secretion of apoB. HepG2SOCS3 show lower phosphorylation levels of insulin receptor substrate 1 (IRS-1) Tyr896 and Akt Ser473 in response to insulin. Finally, insulin stimulation produced an additive effect with SOCS3 overexpression, further inducing PCSK9, SREBP-1, fatty acid synthase, and apoB mRNA. In conclusion, our data candidate PCSK9 as a gene involved in lipid metabolism regulated by proinflammatory cytokine TNF-α in a SOCS3-dependent manner.
Frontiers in Cellular Neuroscience | 2013
Valeria Crippa; Alessandra Boncoraglio; Mariarita Galbiati; Tanya Aggarwal; Paola Rusmini; Elisa Giorgetti; Riccardo Cristofani; Serena Carra; Maria Pennuto; Angelo Poletti
Amyotrophic lateral sclerosis (ALS) is a motoneuron disease characterized by misfolded proteins aggregation in affected motoneurons. In mutant SOD1 (mutSOD1) ALS models, aggregation correlates to impaired functions of proteasome and/or autophagy, both essential for the intracellular chaperone-mediated protein quality control (PQC), and to a reduced mutSOD1 clearance from motoneurons. Skeletal muscle cells are also sensitive to mutSOD1 toxicity, but no mutSOD1 aggregates are formed in these cells, that might better manage mutSOD1 than motoneurons. Thus, we analyzed in spinal cord and in muscle of transgenic (tg) G93A-SOD1 mice at presymptomatic (PS, 8 weeks) and symptomatic (S, 16 weeks) stages, and in age-matched control mice, whether mutSOD1 differentially modulates relevant PQC players, such as HSPB8, BAG3, and BAG1. Possible sex differences were also considered. No changes of HSPB8, BAG3, and BAG1 at PS stage (8 weeks) were seen in all tissues examined in tg G93A-SOD1 and control mice. At S stage (16 weeks), HSPB8 dramatically increased in skeletal muscle of tg G93A-SOD1 mice, while a minor increase occurred in spinal cord of male, but not female tg G93A-SOD1 mice. BAG3 expression increased both in muscle and spinal cord of tg G93A-SOD1 mice at S stage, BAG1 expression increased only in muscle of the same mice. Since, HSPB8-BAG3 complex assists mutSOD1 autophagic removal, we analyzed two well-known autophagic markers, LC3 and p62. Both LC3 and p62 mRNAs were significantly up-regulated in skeletal muscle of tg G93A-SOD1 mice at S stage (16 weeks). This suggests that mutSOD1 expression induces a robust autophagic response specifically in muscle. Together these results demonstrate that, in muscle mutSOD1-induced autophagic response is much higher than in spinal cord. In addition, if mutSOD1 exerts toxicity in muscle, this may not be mediated by misfolded proteins accumulation. It remains unclear whether in muscle mutSOD1 toxicity is related to aberrant autophagy activation.
Neurobiology of Aging | 2013
Paola Rusmini; Valeria Crippa; Elisa Giorgetti; Alessandra Boncoraglio; Riccardo Cristofani; Serena Carra; Angelo Poletti
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease caused by an abnormal expansion of a tandem CAG repeat in exon 1 of the androgen receptor (AR) gene that results in an abnormally long polyglutamine tract (polyQ) in the AR protein. As a result, the mutant AR (ARpolyQ) misfolds, forming cytoplasmic and nuclear aggregates in the affected neurons. Neurotoxicity only appears to be associated with the formation of nuclear aggregates. Thus, improved ARpolyQ cytoplasmic clearance, which indirectly decreases ARpolyQ nuclear accumulation, has beneficial effects on affected motoneurons. In addition, increased ARpolyQ clearance contributes to maintenance of motoneuron proteostasis and viability, preventing the blockage of the proteasome and autophagy pathways that might play a role in the neuropathy in SBMA. The expression of heat shock protein B8 (HspB8), a member of the small heat shock protein family, is highly induced in surviving motoneurons of patients affected by motoneuron diseases, where it seems to participate in the stress response aimed at cell protection. We report here that HspB8 facilitates the autophagic removal of misfolded aggregating species of ARpolyQ. In addition, though HspB8 does not influence p62 and LC3 (two key autophagic molecules) expression, it does prevent p62 bodies formation, and restores the normal autophagic flux in these cells. Interestingly, trehalose, a well-known autophagy stimulator, induces HspB8 expression, suggesting that HspB8 might act as one of the molecular mediators of the proautophagic activity of trehalose. Collectively, these data support the hypothesis that treatments aimed at restoring a normal autophagic flux that result in the more efficient clearance of mutant ARpolyQ might produce beneficial effects in SBMA patients.
Scientific Reports | 2016
Valeria Crippa; Vito G. D’Agostino; Riccardo Cristofani; Paola Rusmini; Maria Elena Cicardi; Elio Messi; Rosa Loffredo; Michael Pancher; Margherita Piccolella; Mariarita Galbiati; Marco Meroni; Cristina Cereda; Serena Carra; Alessandro Provenzani; Angelo Poletti
Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models.
Human Molecular Genetics | 2015
Elisa Giorgetti; Paola Rusmini; Valeria Crippa; Riccardo Cristofani; Alessandra Boncoraglio; Maria Elena Cicardi; Mariarita Galbiati; Angelo Poletti
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease due to a CAG triplet-repeat expansion in the androgen receptor (AR) gene, which is translated into an elongated polyglutamine (polyQ) tract in AR protein (ARpolyQ). ARpolyQ toxicity is activated by the AR ligand testosterone (or dihydrotestosterone), and the polyQ triggers ARpolyQ misfolding and aggregation in spinal cord motoneurons and muscle cells. In motoneurons, testosterone triggers nuclear toxicity by inducing AR nuclear translocation. Thus, (i) prevention of ARpolyQ nuclear localization, combined with (ii) an increased ARpolyQ cytoplasmic clearance, should reduce its detrimental activity. Using the antiandrogen Bicalutamide (Casodex®), which slows down AR activation and nuclear translocation, and the disaccharide trehalose, an autophagy activator, we found that, in motoneurons, the two compounds together reduced ARpolyQ insoluble forms with higher efficiency than that obtained with single treatments. The ARpolyQ clearance was mediated by trehalose-induced autophagy combined with the longer cytoplasmic retention of ARpolyQ bound to Bicalutamide. This allows an increased recognition of misfolded species by the autophagic system prior to their migration into the nucleus. Interestingly, the combinatory use of trehalose and Bicalutamide was also efficient in the removal of insoluble species of AR with a very long polyQ (Q112) tract, which typically aggregates into the cell nuclei. Collectively, these data suggest that the combinatory use of Bicalutamide and trehalose is a novel approach to facilitate ARpolyQ clearance that has to be tested in other cell types target of SBMA (i.e. muscle cells) and in vivo in animal models of SBMA.
Neurochemistry International | 2014
Mariarita Galbiati; Valeria Crippa; Paola Rusmini; Riccardo Cristofani; Maria Elena Cicardi; Elisa Giorgetti; Elisa Onesto; Elio Messi; Angelo Poletti
Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression.
Scientific Reports | 2015
Paola Rusmini; Maria J. Polanco; Riccardo Cristofani; Maria Elena Cicardi; Marco Meroni; Mariarita Galbiati; Margherita Piccolella; Elio Messi; Elisa Giorgetti; Andrew P. Lieberman; Carmelo Milioto; Anna Rocchi; Tanya Aggarwal; Maria Pennuto; Valeria Crippa; Angelo Poletti
Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGFβ1 and PGC-1α were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3:BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments.
Journal of Molecular Neuroscience | 2016
Paola Rusmini; Valeria Crippa; Riccardo Cristofani; Carlo Rinaldi; Maria Elena Cicardi; Mariarita Galbiati; Serena Carra; Bilal Malik; Linda Greensmith; Angelo Poletti
Spinal and bulbar muscular atrophy (SBMA) or Kennedy’s disease is an X-linked disease associated with the expansion of the CAG triplet repeat present in exon 1 of the androgen receptor (AR) gene. This results in the production of a mutant AR containing an elongated polyglutamine tract (polyQ) in its N-terminus. Interestingly, the ARpolyQ becomes toxic only after its activation by the natural androgenic ligands, possibly because of aberrant androgen-induced conformational changes of the ARpolyQ, which generate misfolded species. These misfolded ARpolyQ species must be cleared from motoneurons and muscle cells, and this process is mediated by the protein quality control (PQC) system. Experimental evidence suggested that failure of the PQC pathways occurs in disease, leading to ARpolyQ accumulation and toxicity in the target cells. In this review, we summarized the overall impact of mutant and misfolded ARpolyQ on the PQC system and described how molecular chaperones and the degradative pathways (ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and the unfolded protein response (UPR), which activates the endoplasmic reticulum-associated degradation (ERAD)) are differentially affected in SBMA. We also extensively and critically reviewed several molecular and pharmacological approaches proposed to restore a global intracellular activity of the PQC system. Collectively, these data suggest that the fine and delicate equilibrium existing among the different players of the PQC system could be restored in a therapeutic perspective by the synergic/additive activities of compounds designed to tackle sequential or alternative steps of the intracellular defense mechanisms triggered against proteotoxic misfolded species.
Cell Stress & Chaperones | 2018
Riccardo Cristofani; Valeria Crippa; Giulia Vezzoli; Paola Rusmini; Mariarita Galbiati; Maria Elena Cicardi; Marco Meroni; Veronica Ferrari; Barbara Tedesco; Margherita Piccolella; Elio Messi; Serena Carra; Angelo Poletti
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative diseases in which similar pathogenic mechanisms are involved. Both diseases associate to the high propensity of specific misfolded proteins, like TDP-43 or FUS, to mislocalize and aggregate. This is partly due to their intrinsic biophysical properties and partly as a consequence of failure of the neuronal protein quality control (PQC) system. Several familial ALS/FTD cases are linked to an expansion of a repeated G4C2 hexanucleotide sequence present in the C9ORF72 gene. The G4C2, which localizes in an untranslated region of the C9ORF72 transcript, drives an unconventional repeat-associated ATG-independent translation. This leads to the synthesis of five different dipeptide repeat proteins (DPRs), which are not “classical” misfolded proteins, but generate aberrant aggregation-prone unfolded conformations poorly removed by the PQC system. The DPRs accumulate into p62/SQSTM1 and ubiquitin positive inclusions. Here, we analyzed the biochemical behavior of the five DPRs in immortalized motoneurons. Our data suggest that while the DPRs are mainly processed via autophagy, this system is unable to fully clear their aggregated forms, and thus they tend to accumulate in basal conditions. Overexpression of the small heat shock protein B8 (HSPB8), which facilitates the autophagy-mediated disposal of a large variety of classical misfolded aggregation-prone proteins, significantly decreased the accumulation of most DPR insoluble species. Thus, the induction of HSPB8 might represent a valid approach to decrease DPR-mediated toxicity and maintain motoneuron viability.