Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riccardo Patacchini is active.

Publication


Featured researches published by Riccardo Patacchini.


Proceedings of the National Academy of Sciences of the United States of America | 2007

4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1

Marcello Trevisani; Jan Siemens; Serena Materazzi; Diana M. Bautista; Romina Nassini; Barbara Campi; Noritaka Imamachi; Eunice André; Riccardo Patacchini; Graeme S. Cottrell; Raffaele Gatti; Allan I. Basbaum; Nigel W. Bunnett; David Julius; Pierangelo Geppetti

TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous α,β-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.


Journal of Clinical Investigation | 2008

Cigarette smoke-induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents

Eunice André; Barbara Campi; Serena Materazzi; Marcello Trevisani; Silvia Amadesi; Daniela Massi; Christophe Créminon; Natalya Vaksman; Romina Nassini; Maurizio Civelli; Pier Giovanni Baraldi; Daniel P. Poole; Nigel W. Bunnett; Pierangelo Geppetti; Riccardo Patacchini

Cigarette smoke (CS) inhalation causes an early inflammatory response in rodent airways by stimulating capsaicin-sensitive sensory neurons that express transient receptor potential cation channel, subfamily V, member 1 (TRPV1) through an unknown mechanism that does not involve TRPV1. We hypothesized that 2 alpha,beta-unsaturated aldehydes present in CS, crotonaldehyde and acrolein, induce neurogenic inflammation by stimulating TRPA1, an excitatory ion channel coexpressed with TRPV1 on capsaicin-sensitive nociceptors. We found that CS aqueous extract (CSE), crotonaldehyde, and acrolein mobilized Ca2+ in cultured guinea pig jugular ganglia neurons and promoted contraction of isolated guinea pig bronchi. These responses were abolished by a TRPA1-selective antagonist and by the aldehyde scavenger glutathione but not by the TRPV1 antagonist capsazepine or by ROS scavengers. Treatment with CSE or aldehydes increased Ca2+ influx in TRPA1-transfected cells, but not in control HEK293 cells, and promoted neuropeptide release from isolated guinea pig airway tissue. Furthermore, the effect of CSE and aldehydes on Ca2+ influx in dorsal root ganglion neurons was abolished in TRPA1-deficient mice. These data identify alpha,beta-unsaturated aldehydes as the main causative agents in CS that via TRPA1 stimulation mediate airway neurogenic inflammation and suggest a role for TRPA1 in the pathogenesis of CS-induced diseases.


Pain | 2011

Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation

Romina Nassini; Maarten Gees; Selena Harrison; Gaetano De Siena; Serena Materazzi; Nadia Moretto; Paola Failli; Delia Preti; Nicola Marchetti; Alberto Cavazzini; Francesca Mancini; Pamela Pedretti; Bernd Nilius; Riccardo Patacchini; Pierangelo Geppetti

&NA; Platinum‐based anticancer drugs cause neurotoxicity. In particular, oxaliplatin produces early‐developing, painful, and cold‐exacerbated paresthesias. However, the mechanism underlying these bothersome and dose‐limiting adverse effects is unknown. We hypothesized that the transient receptor potential ankyrin 1 (TRPA1), a cation channel activated by oxidative stress and cold temperature, contributes to mechanical and cold hypersensitivity caused by oxaliplatin and cisplatin. Oxaliplatin and cisplatin evoked glutathione‐sensitive relaxation, mediated by TRPA1 stimulation and the release of calcitonin gene‐related peptide from sensory nerve terminals in isolated guinea pig pulmonary arteries. No calcium response was observed in cultured mouse dorsal root ganglion neurons or in naïve Chinese hamster ovary (CHO) cells exposed to oxaliplatin or cisplatin. However, oxaliplatin, and with lower potency, cisplatin, evoked a glutathione‐sensitive calcium response in CHO cells expressing mouse TRPA1. One single administration of oxaliplatin produced mechanical and cold hyperalgesia in rats, an effect selectively abated by the TRPA1 antagonist HC‐030031. Oxaliplatin administration caused mechanical and cold allodynia in mice. Both responses were absent in TRPA1‐deficient mice. Administration of cisplatin evoked mechanical allodynia, an effect that was reduced in TRPA1‐deficient mice. TRPA1 is therefore required for oxaliplatin‐evoked mechanical and cold hypersensitivity, and contributes to cisplatin‐evoked mechanical allodynia. Channel activation is most likely caused by glutathione‐sensitive molecules, including reactive oxygen species and their byproducts, which are generated after tissue exposure to platinum‐based drugs from cells surrounding nociceptive nerve terminals. TRPA1 is necessary and sufficient for mechanical‐ and cold‐hypersensitivity evoked by oxaliplatin/cisplatin. TRPA1 activation occurs through reactive molecules, after tissue exposure to platinum‐based drugs.


British Journal of Pharmacology | 2005

Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways

Marcello Trevisani; Riccardo Patacchini; Paola Nicoletti; Raffaele Gatti; David Gazzieri; Nicola Lissi; Giovanni Zagli; Christophe Créminon; Pierangelo Geppetti; Selena Harrison

1 Hydrogen sulfide (H2S) is described as a mediator of diverse biological effects, and is known to produce irritation and injury in the lung following inhalation. Recently, H2S has been found to cause contraction in the rat urinary bladder via a neurogenic mechanism. Here, we studied whether sodium hydrogen sulfide (NaHS), used as donor of H2S, produces responses mediated by sensory nerve activation in the guinea‐pig airways. 2 NaHS evoked an increase in neuropeptide release in the airways that was significantly attenuated by capsaicin desensitization and by the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. In addition, NaHS caused an atropine‐resistant contraction of isolated airways, which was completely prevented by capsaicin desensitization. Furthermore, NaHS‐induced contraction was reduced by TRPV1 antagonism (ruthenium red, capsazepine and SB366791), and was abolished by pretreatment with the combination of tachykinin NK1 (SR140333) and NK2 (SR48968) receptor antagonists. 3 In anesthetized guinea‐pigs, intratracheal instillation of NaHS increased the total lung resistance and airway plasma protein extravasation. These two effects were reduced by TRPV1 antagonism (capsazepine) and tachykinin receptors (SR140333 and SR48968) blockade. 4 Our results provide the first pharmacological evidence that H2S provokes tachykinin‐mediated neurogenic inflammatory responses in guinea‐pig airways, and that this effect is mediated by stimulation of TRPV1 receptors on sensory nerves endings. This novel mechanism may contribute to the irritative action of H2S in the respiratory system.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1

Serena Materazzi; Romina Nassini; Eunice André; Barbara Campi; Silvia Amadesi; Marcello Trevisani; Nigel W. Bunnett; Riccardo Patacchini; Pierangelo Geppetti

Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ2, PGA2, and PGA1, formed by dehydration of their respective parent PGs, PGD2, PGE2, and PGE1, possess a highly reactive α,β-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. Here, by using TRPA1 wild-type (TRPA1+/+) or deficient (TRPA1−/−) mice, we show that cyclopentenone PGs produce pain by direct stimulation of nociceptors via TRPA1 activation. Cyclopentenone PGs caused a robust calcium response in dorsal root ganglion (DRG) neurons of TRPA1+/+, but not of TRPA1−/− mice, and a calcium-dependent release of sensory neuropeptides from the rat dorsal spinal cord. Intraplantar injection of cyclopentenone PGs stimulated c-fos expression in spinal neurons of the dorsal horn and evoked an instantaneous, robust, and transient nociceptive response in TRPA1+/+ but not in TRPA1−/− mice. The classical proalgesic PG, PGE2, caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1+/+ and TRPA1−/− mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases.


PLOS ONE | 2012

Transient Receptor Potential Ankyrin 1 Channel Localized to Non-Neuronal Airway Cells Promotes Non-Neurogenic Inflammation

Romina Nassini; Pamela Pedretti; Nadia Moretto; Chiara Carnini; Fabrizio Facchinetti; Arturo Roberto Viscomi; Anna Pisano; Susan Stokesberry; Charlott Brunmark; Naila Svitacheva; Lorcan McGarvey; Riccardo Patacchini; Anders B. Damholt; Pierangelo Geppetti; Serena Materazzi

Background The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1. Methodology/Principal Findings By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves. Conclusions Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests that non-neuronal TRPA1 in the airways is functional and potentially capable of contributing to inflammatory airway diseases.


European Journal of Pharmacology | 1989

Potent contractile effect of endothelin in isolated guinea-pig airways

Carlo Alberto Maggi; Riccardo Patacchini; Sandro Giuliani; Alberto Meli

Endothelin produced a concentration-dependent (1 nM-0.3 microM) contraction of isolated guinea-pig airways (trachea and main bronchi). The response was unaffected by tetrodotoxin (1 microM) and slightly depressed by indomethacin (5 microM) but promptly abolished by isoprenaline (1 microM) or EDTA (3 mM). In the bronchi, the response to endothelin was enhanced by removal (rubbing) of the epithelium. The response of the trachea or bronchi to endothelin (0.3 microM) was unaffected by NiCl2 (0.1 mM) or omega conotoxin (0.1 microM) but was partially inhibited by nifedipine (1 microM).


Naunyn-schmiedebergs Archives of Pharmacology | 1988

The effect of omega conotoxin GVIA, a peptide modulator of the N-type voltage sensitive calcium channels, on motor responses produced by activation of efferent and sensory nerves in mammalian smooth muscle.

Carlo Alberto Maggi; Riccardo Patacchini; Paolo Santicioli; Irmgard Th. Lippe; Sandro Giuliani; Pierangelo Geppetti; Elena Del Bianco; Silvia Selleri; Alberto Meli

Summary1.The effect of omega-conotoxin (CTX) GVIA, a peptide which blocks neuronal calcium channels, were investigated on nerve-mediated motor responses in a variety of isolated smooth muscle preparations from rats and guinea-pigs.2.In the rat or guinea-pig isolated vas deferens CTX (1 nM − 1 μM) produced a concentration and time-related inhibition of the response to field stimulation, while the responses to KCI, noradrenaline or adenosine triphosphate were unaffected. In the presence of CTX a series of tetrodotoxin-resistant contractions could be elicited by field stimulation by increasing pulse width and/or voltage.3.In the rat or guinea-pig isolated urinary bladder, CTX produced a concentration and time-dependent inhibition of twitch responses to field stimulation without affecting the response to exogenous acetylcholine. In the rat bladder the maximal effect did not exceed 25% inhibition while a much larger fraction of the response (about 70%) was inhibited in the guinea-pig bladder. The CTX-resistant response was abolished, in both tissues, by tetrodotoxin.4.The effects of CTX in the rat bladder were also studied with a whole range of frequencies of field stimulation (0.1–50 Hz). Maximal inhibition was observed toward contractions elicited at frequencies of 2–5 Hz. At low frequencies the inhibitory effects of CTX and atropine were almost additive while at high frequencies of stimulation a large component of the atropine-sensitive response was CTX-resistant.5.In the rat isolated proximal duodenum, field stimulation in the- presence of atropine and guanethidine produced a primary relaxation followed by a rebound contraction. Both responses were abolished by tetrodotoxin, indicating the activation of intramural nonadrenergic noncholinergic nerves. The primary relaxation was totally CTX resistant while the rebound contraction was slightly inhibited.6.The motor responses produced by capsaicin (1 μM) in the rat or guinea-pig bladder (contraction) and in the rat proximal duodenum (relaxation) were unaffected by CTX. Likewise, the release of substance P-like immunoreactivity from sensory nerves of the guinea-pig bladder muscle was unaffected by CTX.7.These findings indicate that CTX-sensitive calcium channels modulate transmitter release in autonomic nerve terminals of mammals, but noticeable species and organ related variations exist in sensitivity to this peptide, possibly reflecting the existence of a heterogenous population of voltage-sensitive calcium channels. CTX-sensitive calcium channels are apparently not involved in the excitatory action of capsaicin on sensory nerve terminals.


British Journal of Pharmacology | 2004

Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder

Riccardo Patacchini; Paolo Santicioli; Sandro Giuliani; Carlo Alberto Maggi

In the rat isolated urinary bladder, NaHS (30 μM–3 mM) and capsaicin (10 nM–3 μM) produced concentration‐dependent contractile responses (pEC50=3.5±0.02 and 7.1±0.02, respectively) undergoing dramatic tachyphylaxis. In preparations in which sensory nerves were rendered desensitized (defunctionalized) by high‐capsaicin (10 μM for 15 min) pretreatment, neither capsaicin itself nor NaHS produced any motor effect. NaHS‐induced contractile effects were totally prevented by the simultaneous incubation with tachykinin NK1 (GR 82334; 10 μM) and NK2 (nepadutant; 0.3 μM) receptor‐selective antagonists. Tetrodotoxin (1 μM) only partially reduced the response to NaHS. These results provide pharmacological evidence that H2S stimulates capsaicin‐sensitive primary afferent nerve terminals, from which tachykinins are released to produce the observed contraction by activating NK1 and NK2 receptors. While the molecular site of action of H2S remains to be investigated, our discovery may have important physiological significance since H2S concentrations capable of stimulating sensory nerves overlap those occurring in mammalian tissues under normal conditions.


European Journal of Pharmacology | 1988

The antagonism induced by ruthenium red of the actions of capsaicin on the peripheral terminals of sensory neurons: further studies

Carlo Alberto Maggi; Paolo Santicioli; Pierangelo Geppetti; Massimo Parlani; Mara Astolfi; Philippe Pradelles; Riccardo Patacchini; Alberto Meli

Ruthenium Red, an inorganic dye which blocks transmembrane calcium (Ca) fluxes in neural tissues, reduced the capsaicin-induced release of substance P-like immunoreactivity from muscle strips of the guinea-pig urinary bladder in a concentration-dependent (30 nM - 3 microM) manner, and protected the sensory fibers from capsaicin-induced densensitization. A similar antagonism of the actions of capsaicin was observed in functional experiments (capsaicin-induced contraction of the isolated guinea-pig bladder or inhibition of twitches of the isolated rat vas deferens). In view of its established action on the depolarization-coupled entry of Ca into synaptosomes and the secretion of transmitter, we propose that Ruthenium Red could antagonize the action of capsaicin on the peripheral terminals of sensory nerves by a similar mechanism, thereby suppressing transmitter secretion and preventing the establishment of desensitization.

Collaboration


Dive into the Riccardo Patacchini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandro Giuliani

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Civelli

Chiesi Farmaceutici S.p.A.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge