Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riccardo Petrelli is active.

Publication


Featured researches published by Riccardo Petrelli.


Journal of Cluster Science | 2017

Commentary: Making Green Pesticides Greener? The Potential of Plant Products for Nanosynthesis and Pest Control

Giovanni Benelli; Roman Pavela; Filippo Maggi; Riccardo Petrelli; Marcello Nicoletti

The resurgence of interest on natural substances and their progressive affirmation in the market open doors for novel marketed products, with intrinsic original approaches. Evident examples are in the food supplements sector as well as in mix of synthetic drugs and natural substances, as novel drugs. A decisive key role will be played by technology and the capacity of throw novel opportunities out of the normal landscape. As in other fields, most of the future technology developments rely on nanotechnology. In this Commentary, after the discussion focused on the novel roles of natural products, we report the recent results in the application of nanotechnology in one of the most relevant challenge for mankind, consisting in the resurgence of important vector-borne diseases and emergence of new epidemic alerts. In particular, the green synthesis of nanopesticides is cheap and environmental friendly, since it does not require the employment of highly toxic chemicals or elevate energy inputs. In the conclusions, a brief agenda summarizing the challenges for nano-based pest control is outlined.


Glia | 2014

The A1 adenosine receptor as a new player in microglia physiology

Livio Luongo; Francesca Guida; R. Imperatore; F. Napolitano; Luisa Gatta; Luigia Cristino; Catia Giordano; Dario Siniscalco; V. Di Marzo; Giulia Bellini; Riccardo Petrelli; Loredana Cappellacci; Alessandro Usiello; V. de Novellis; Francesco Rossi; Sabatino Maione

The purinergic system is highly involved in the regulation of microglial physiological processes. In addition to the accepted roles for the P2X4,7 and P2Y12 receptors activated by adenosine triphosphate (ATP) and adenosine diphosphate, respectively, recent evidence suggests a role for the adenosine A2A receptor in microglial cytoskeletal rearrangements. However, the expression and function of adenosine A1 receptor (A1AR) in microglia is still unclear. Several reports have demonstrated possible expression of A1AR in microglia, but a new study has refuted such evidence. In this study, we investigated the presence and function of A1AR in microglia using biomolecular techniques, live microscopy, live calcium imaging, and in vivo electrophysiological approaches. The aim of this study was to clarify the expression of A1AR in microglia and to highlight its possible roles. We found that microglia express A1AR and that it is highly upregulated upon ATP treatment. Moreover, we observed that selective stimulation of A1AR inhibits the morphological activation of microglia, possibly by suppressing the Ca2+ influx induced by ATP treatment. Finally, we recorded the spontaneous and evoked activity of spinal nociceptive‐specific neuron before and after application of resting or ATP‐treated microglia, with or without preincubation with a selective A1AR agonist. We found that the microglial cells, pretreated with the A1AR agonist, exhibit lower capability to facilitate the nociceptive neurons, as compared with the cells treated with ATP alone. GLIA 2014;62:122–132


Current Medicinal Chemistry | 2008

Nicotinamide adenine dinucleotide based therapeutics.

Liqiang Chen; Riccardo Petrelli; Krzysztof Felczak; Guang Yao Gao; Laurent Bonnac; J.S. Yu; Eric M. Bennett; Krzysztof W. Pankiewicz

Nicotinamide adenine dinucleotide (NAD), generally considered a key component involved in redox reactions, has been found to participate in an increasingly diverse range of cellular processes, including signal transduction, DNA repair, and post-translational protein modifications. In recent years, medicinal chemists have become interested in the therapeutic potential of molecules affecting interactions of NAD with NAD-dependent enzymes. Also, enzymes involved in de novo biosynthesis, salvage pathways, and down-stream utilization of NAD have been extensively investigated and implicated in a wide variety of diseases. These studies have bolstered NAD-based therapeutics as a new avenue for the discovery and development of novel treatments for medical conditions ranging from cancer to aging. Industrial and academic groups have produced structurally diverse molecules which target NAD metabolic pathways, with some candidates advancing into clinical trials. However, further intensive structural, biological, and medical studies are needed to facilitate the design and evaluation of new generations of NAD-based therapeutics. At this time, the field of NAD-therapeutics is most likely at a stage similar to that of the early successful development of protein kinase inhibitors, where analogs of ATP (a more widely utilized metabolite than NAD) began to show selectivity against target enzymes. This review focuses on key representative opportunities for research in this area, which extends beyond the scope of this article.


Molecules | 2012

5'-Chloro-5'-deoxy-(±)-ENBA, a Potent and Selective Adenosine A1 Receptor Agonist, Alleviates Neuropathic Pain in Mice Through Functional Glial and Microglial Changes without Affecting Motor or Cardiovascular Functions

Livio Luongo; Riccardo Petrelli; Luisa Gatta; Catia Giordano; Francesca Guida; Patrizia Vita; Palmarisa Franchetti; Mario Grifantini; V. de Novellis; Loredana Cappellacci; Sabatino Maione

This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A1 receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A1 adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±)-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A1 receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A1 receptor agonist in neuropathic pain symptoms.


Bioorganic & Medicinal Chemistry | 2010

Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylase based on a cinnamic hydroxamic acid core structure

Liqiang Chen; Riccardo Petrelli; Guangyao Gao; Daniel J. Wilson; Garrett T. McLean; Hiremagalur N. Jayaram; Yuk Y. Sham; Krzysztof W. Pankiewicz

Small molecules that act on multiple biological targets have been proposed to combat the drug resistance commonly observed for cancer chemotherapy. By combining the structural features of known inhibitors of inosine monophosphate dehydrogense (IMPDH) and histone deacetylase (HDAC), dual inhibitors of IMPDH and HDAC based on the scaffold of cinnamic hydroxamic acid (CHA) have been designed, synthesized, and evaluated in biological assays. Key features, including the linker length, linker functionality, substitution position, and interacting groups, have been explored. Their individual contribution to the inhibitory activities against human IMPDH1 and IMPDH2 as well as HDAC has been assessed.


Current Medicinal Chemistry | 2011

NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: Chemistry and potential therapeutic applications

Riccardo Petrelli; Krzysztof Felczak; Loredana Cappellacci

Nicotinamide adenine dinucleotide (NAD(+)) has a crucial role in many cellular processes, both as a coenzyme for redox reactions and as a substrate to donate ADP-ribose units. Thus, enzymes involved in NAD(+) metabolism are attractive targets for drug discovery against a variety of human diseases. Herein we focus on two of them: NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK). NMNAT is a key enzyme in all organisms catalyzing coupling of ATP and NMN or NaMN yielding NAD or NaAD, respectively. NADKs are ubiquitous enzymes involved in the last step of the biosynthesis of NADP. They phosphorylate NAD to produce NADP using ATP (or inorganic polyphosphates) in the presence of Mg(2+). No other pathway of NADP biosynthesis has been found in prokaryotic or eukaryotic cells. In this review we provide a comprehensive summary of NMNAT and NADK inhibitors highlighting their chemical modifications by different synthetic approaches, and structure-activity relationships depending on their potential therapeutic applications.


Recent Patents on Anti-cancer Drug Discovery | 2013

Novel Inhibitors of Inosine Monophosphate Dehydrogenase in Patent Literature of the Last Decade

Riccardo Petrelli; Patrizia Vita; Ilaria Torquati; Krzysztof Felczak; Daniel J. Wilson; Palmarisa Franchetti; Loredana Cappellacci

Inosine monophosphate dehydrogenase (IMPDH), an NAD-dependent enzyme that controls de novo synthesis of guanine nucleotides, has received considerable interest in recent years as an important target enzyme, not only for the discovery of anticancer drugs, but also for antiviral, antiparasitic, and immunosuppressive chemotherapy. The field of IMPDH inhibitor research is highly important for providing potential therapeutics against a validated target for disease intervention. This patent review examines the chemical structures and biological activities of recently reported IMPDH inhibitors. Patent databases SciFinder and Espacenet and Delphion were used to locate patent applications that were published between January 2002 and July 2012, claiming chemical structures for use as IMPDH inhibitors. From 2002 to 2012, around 47 primary patent applications have claimed IMPDH inhibitors, which we analyzed by target and applicant. The level of newly published patent applications covering IMPDH inhibitors remains high and a diverse range of scaffolds has been claimed.


Current Medicinal Chemistry | 2015

Nicotinamide Adenine Dinucleotide Based Therapeutics, Update.

Krzysztof W. Pankiewicz; Riccardo Petrelli; Rohit Singh; Krzysztof Felczak

About 500 NAD (P)-dependent enzymes in the cell use NAD (P) as a cofactor or a substrate. This family of broadly diversified enzymes is crucial for maintaining homeostasis of all living organisms. The NAD binding domain of these enzymes is conserved and it was believed that NAD mimics would not be of therapeutic value due to lack of selectivity. Consequently, only mycophenolic acid which selectively binds at the cofactor pocket of NAD-dependent IMP-dehydrogenase (IMPDH) has been approved as an immunosuppressant. Recently, it became clear that the NAD (P)-binding domain was structurally much more diversified than anticipated and numerous highly potent and selective inhibitors of NAD (P) dependent enzymes have been reported. It is likely, that as in the case of protein kinases inhibitors, inhibitors of NAD (P)-dependent enzymes would find soon their way to the clinic. In this review, recent developments of selective inhibitors of NAD-dependent human IMPDH, as well as inhibitors of IMPDHs from parasites, and from bacterial sources are reported. Therapies against Cryptosporidium parvum and the development of new antibiotics that are on the horizon will be discussed. New inhibitors of bacterial NAD-ligases, NAD-kinases, NMN-adenylyl transferases, as well as phosphoribosyl transferases are also described. Although none of these compounds has yet to be approved, the progress in revealing and understanding crucial factors that might allow for designing more potent and efficient drug candidates is enormous and highly encouraging.


Bioorganic & Medicinal Chemistry | 2008

Bis(sulfonamide) isosters of mycophenolic adenine dinucleotide analogues : Inhibition of inosine monophosphate dehydrogenase

Liqiang Chen; Riccardo Petrelli; Magdalena Olesiak; Daniel J. Wilson; Nicholas P. Labello; Krzysztof W. Pankiewicz

Synthesis of novel inhibitors of human IMP dehydrogenase is described. These inhibitors are isosteric methylenebis(sulfonamide) analogues 5-8 of earlier reported mycophenolic adenine methylenebis(phosphonate)s 1-3. The parent bis(phosphonate) 1 and its bis(sulfonamide) analogue 5 showed similar sub-micromolar inhibitory activity against IMPDH2 (K(i) approximately 0.2 microM). However, the bis(sulfonamide) analogues 6 and 8 substituted at the position 2 of adenine were approximately 3- to 10-fold less potent inhibitors of IMPDH2 (K(i)=0.3-0.4 microM) than the corresponding parent bis(phosphonate)s 2 and 3 (K(i)=0.04-0.11 microM), respectively.


Nucleosides, Nucleotides & Nucleic Acids | 2007

Inhibition of HIV-1 Replication in Macrophages by Red Blood Cell-Mediated Delivery of a Heterodinucleotide of Lamivudine and Tenofovir

Palmarisa Franchetti; Loredana Cappellacci; Riccardo Petrelli; Patrizia Vita; Mario Grifantini; Luigia Rossi; Francesca Pierigè; Sonja Serafini; Mauro Magnani; Emanuela Balestra; Carlo Federico Perno

Homo- and heterodimers of nucleoside/nucleotide analogues as reverse transcriptase inhibitors are effective on HIV-1-infected human monocyte-derived macrophages (M/M) compared to the single drugs or their combination. Since the combined treatment of lamivudine (3TC) and tenofovir ((R)PMPA) has an antiretroviral efficacy and a synergic effect respect to separate drugs, the heterodinucleotide 3TCpPMPA was synthesized. A single administration of the dimer as free drug or 3TCpPMPA-loaded RBC selectively targeted to M/M was able to almost completely protect macrophages from “de novo” infection.

Collaboration


Dive into the Riccardo Petrelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Lavecchia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Sabatino Maione

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge