Riccardo Pietrabissa
Polytechnic University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Riccardo Pietrabissa.
Journal of Biomechanics | 2002
Francesco Migliavacca; Lorenza Petrini; Maurizio Colombo; Ferdinando Auricchio; Riccardo Pietrabissa
Intravascular stents are small tube-like structures expanded into stenotic arteries to restore blood flow perfusion to the downstream tissues. The stent is mounted on a balloon catheter and delivered to the site of blockage. When the balloon is inflated, the stent expands and is pressed against the inner wall of the coronary artery. After the balloon is deflated and removed, the stent remains in place, keeping the artery open. Hence, the stent expansion defines the effectiveness of the surgical procedure: it depends on the stent geometry, it includes large displacements and deformations and material non-linearity. In this paper, the finite element method is applied (i) to understand the effects of different geometrical parameters (thickness, metal-to-artery surface ratio, longitudinal and radial cut lengths) of a typical diamond-shaped coronary stent on the device mechanical performance, (ii) to compare the response of different actual stent models when loaded by internal pressure and (iii) to collect suggestions for optimizing the device shape and performance. The stent expansion and partial recoil under balloon inflation and deflation were simulated. Results showed the influence of the geometry on the stent behavior: a stent with a low metal-to-artery surface ratio has a higher radial and longitudinal recoil, but a lower dogboning. The thickness influences the stent performance in terms of foreshortening, longitudinal recoil and dogboning. In conclusion, a finite element analysis similar to the one herewith proposed could help in designing new stents or analyzing actual stents to ensure ideal expansion and structural integrity, substituting in vitro experiments often difficult and unpractical.
The Journal of Thoracic and Cardiovascular Surgery | 1996
M.R. de Leval; Gabriele Dubini; H. Jalali; Riccardo Pietrabissa
Computational fluid dynamic methods based on a finite-element technique were applied to the study of (1) competition of flows in the inferior and superior venae cavae in total cavopulmonary connection, and (2) competition between flow in the superior vena cava and forward flow from a stenosed pulmonary artery in bidirectional cavopulmonary anastomosis. Models corresponding to various degrees of offsetting and shape of the inferior vena caval anastomosis were simulated to evaluate energy dissipation and flow distribution between the two lungs. A minimal energy loss with optimal flow distribution between the two lungs was obtained by enlarging the inferior vena caval anastomosis toward the right pulmonary artery. This modified technique of total cavopulmonary connection is described. A computational model of the operation was developed in an attempt to understand the mechanisms of postoperative failure. In tight pulmonary artery stenosis (75%), the pulsatile forward flow is primarily directed to the left pulmonary artery, with little influence on superior vena caval pressure and the right pulmonary artery. Pulsatile forward flows corresponding to 15%, 30%, 45%, and 60% of the systemic artery output increased the mean pulmonary artery and superior vena caval pressures by 1, 1.7, 2.4, and 3.6 mm Hg, respectively. Although the modeling studies were not able to determine the cause of postoperative failure, they emphasize the impact of local geometry on flow dynamics. More simulations are required for further investigation of the problem.
Biomaterials | 2000
Manuela Teresa Raimondi; Riccardo Pietrabissa
This paper reports the study performed on four titanium nitride (TiN) coated prosthetic femoral heads collected at revision surgery together with patient data. Surface topology has been examined using Scanning Electron Microscopy (SEM) and elemental analysis of both coating and substrate have been evaluated using energy-dispersive X-ray spectrometry. Quantitative assessment of the surface topography is achieved using contacting profilometry. The average Ra roughness value is calculated at five different locations for each femoral head. The UHMWPE counterface worn volume has been measured directly on the acetabular components. TiN fretting and coating breakthrough occurred in two of the four components examined. In the damaged coating areas the surface profile is macroscopically saw-toothed with average tooth height 1.5 microm. The average Ra value is 0.02 microm on the undamaged surfaces and 0.37 microm on the damaged ones. Failure of the coating adhesion resulted in the release of TiN fragments and of metallic particulate from the substrate fretting corrosion and in the increase of the head surface roughness affecting counterface debris production. Our results suggest that TiN-coated titanium alloy femoral heads are inadequate in the task of resisting third body wear mechanisms in vivo.
European Spine Journal | 2002
S. Caserta; G. A. La Maida; B. Misaggi; D. Peroni; Riccardo Pietrabissa; Manuela Teresa Raimondi; Alberto Redaelli
Abstract. The authors report their experience with the treatment of lumbar instability by a kind of spine stabilization. The elastic stabilization, which follows a new philosophy, is obtained by an interspinous device, and should be used alone in degenerative disc disease, recurrent disc herniation and in very low grade instability, or in association with rigid fusion for the prevention of pathology of the border area. In collaboration with bioengineers, we carried out an experimental study on a lumbar spine model in order to calculate stresses and deformations of lumbar disc during simulation of motion, in physiological conditions and when elastic stabilization is combined with rigid fusion. Results suggest that elastic stabilization reduces stresses on the adjacent disc up to 28° of flexion. Based on this preliminary result, we began to use elastic stabilization alone or combined with fusion in 1994. To date, we have performed 82 surgical procedures, 57 using stabilization alone and 25 combined with fusion, in patients affected by degenerative disc disease, disc herniation, recurrence of disc herniation or other pathologies. Clinical results are satisfactory, especially in the group of patients affected by recurrent disc herniation, in whom the elastic device was used alone.
Journal of Biomechanics | 1996
Gabriele Dubini; M.R. de Leval; Riccardo Pietrabissa; Franco Maria Montevecchi; Roberto Fumero
A computational fluid dynamics study based on the application of the finite element method has been performed to investigate the local hemodynamics of the total cavopulmonary connection. This operation is used to treat congenital malformations of the right heart and consists of a by-pass of the right ventricle. In this paper the adopted methodology is presented, together with some of the preliminary results. A three-dimensional parametric model of the connection and a lumped-parameter mechanical model of the pulmonary circulation have been developed. The three-dimensional model has been used to simulate the local fluid dynamics for different designs of the connection, allowing a quantitative evaluation of the dissipated energy in each of the examined configurations. The pulmonary afterload of the three-dimensional model has been reproduced by coupling it with the pulmonary mechanical model. The results show that, from a comparative point of view, the energetic losses can be greatly reduced if a proper hydraulic design of the connection is adopted, which also allows control of the blood flow distribution into the lungs.
BioMed Research International | 2012
Michele M. Nava; Manuela Teresa Raimondi; Riccardo Pietrabissa
The control of stem cell response in vitro, including self-renewal and lineage commitment, has been proved to be directed by mechanical cues, even in the absence of biochemical stimuli. Through integrin-mediated focal adhesions, cells are able to anchor onto the underlying substrate, sense the surrounding microenvironment, and react to its properties. Substrate-cell and cell-cell interactions activate specific mechanotransduction pathways that regulate stem cell fate. Mechanical factors, including substrate stiffness, surface nanotopography, microgeometry, and extracellular forces can all have significant influence on regulating stem cell activities. In this paper, we review all the most recent literature on the effect of purely mechanical cues on stem cell response, and we introduce the concept of “force isotropy” relevant to cytoskeletal forces and relevant to extracellular loads acting on cells, to provide an interpretation of how the effects of insoluble biophysical signals can be used to direct stem cells fate in vitro.
Journal of Biomechanics | 2004
Tomaso Villa; Francesco Migliavacca; Dario Gastaldi; Maurizio Colombo; Riccardo Pietrabissa
The evaluation of contact areas and pressures in total knee prosthesis is a key issue to prevent early failure. The first part of this study is based on the hypothesis that the patterns of contact stresses on the tibial insert of a knee prosthesis at different stages of the gait cycle could be an indicator of the wear performances of a knee prosthesis. Contact stresses were calculated for a mobile bearing knee prosthesis by means of finite element method (FEM). Contact areas and stresses were also measured through in vitro tests using Fuji Prescale film in order to support the FEM findings. The second part of this study addresses the long-term structural integrity of metal tibial components in terms of fatigue life by means of experimental tests and FEM simulations. Fatigue experimental evaluations were performed on Cr-Co alloy tibial tray, based on ISO standards. FEM models were used to calculate the stress patterns. The failure risk was estimated with a standard fatigue criterion on the basis of the results obtained from the FEM calculations. Experimental and computational results showed a positive matching.
Anesthesia & Analgesia | 1999
Massimo Runza; Riccardo Pietrabissa; Sara Mantero; Alessandro Albani; Virginio Quaglini; Roberto Contro
There is no consensus about the anatomical structure of human dura mater. In particular, the orientation of collagen fibers, which are responsible for biomechanical behavior, is still controversial. The aim of this work was to evaluate the mechanical properties and the microstructure of the lumbar dura mater. We performed experimental mechanical characterization in longitudinal and circumferential directions and a scanning electron microscopy observation of the tissue. Specimens of human dura mater were removed from the dorsal-lumbar region (T12-L4/L5) of six subjects at autopsy; specimens of bovine dorsal-lumbar dura mater were obtained from two animals at slaughter. Human and bovine tissues both exhibited stronger tensile strength and stiffness in the longitudinal than in the circumferential direction. Scanning electron microscopy observations of dura mater showed that the collagen fibers are mainly oriented in a longitudinal direction, which accounts for its stronger tensile strength in this direction. We conclude that dura mater has a different mechanical response in the two directions investigated because the fiber orientation is predominantly longitudinal. Implications: In this experimental work, we studied the structural and functional relationship of human lumbar dura mater. We performed mechanical tests and microscopic observations on dura mater samples. The results show that the dura mater is mainly composed of longitudinally oriented collagen fibers, which account for higher tissue resistance in this direction. (Anesth Analg 1999;88:1317‐21)
Computer Methods in Biomechanics and Biomedical Engineering | 2007
Fabio Galbusera; Margherita Cioffi; Manuela Teresa Raimondi; Riccardo Pietrabissa
This work presents a computational model of tissue growth under interstitial perfusion inside a tissue engineering bioreactor. The model accounts both for the cell population dynamics, using a model based on cellular automata, and for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Lattice–Boltzmann equation and the convection-diffusion equation. The conditions of static culture versus perfused culture were compared, by including the population dynamics along with oxygen diffusion, convective transport and consumption. The model is able to deal with arbitrary complex geometries of the spatial domain; in the present work, the domain modeled was the void space of a porous scaffold for tissue-engineered cartilage. The cell population dynamics algorithm provided results which qualitatively resembled population dynamics patterns observed in experimental studies, and these results were in good quantitative agreement with previous computational studies. Simulation of oxygen transport and consumption showed the fundamental contribution of convective transport in maintaining a high level of oxygen concentration in the whole spatial domain of the scaffold. The model was designed with the aim to be computationally efficient and easily expandable, i.e. to allow straightforward implementability of further models of complex biological phenomena of increasing scientific interest in tissue engineering, such as chemotaxis, extracellular matrix deposition and effect of mechanical stimulation.
Medical Engineering & Physics | 1997
Giancarlo Pennati; Francesco Migliavacca; Gabriele Dubini; Riccardo Pietrabissa; Marc R. de Leval
The bidirectional cavopulmonary anastomosis is used as a staged procedure or a definitive palliation of univentricular hearts. It is often performed in the presence of an additional blood flow arising from the native pulmonary outflow tract. In this paper, the effects of the severity of the pulmonary outflow obstruction and the pulmonary arteriolar resistance are analysed with regard to the haemodynamics in the superior vena cava and the blood distribution into the lungs. A computer model has been developed, which can represent both the preoperative and the postoperative (systemic and pulmonary) circulations in a patient with a double-outlet univentricular heart. It is particularly detailed in the region of the large vessels and includes components that account for local three-dimensional effects due to the actual shape of the anastomosis. Results have indicated that the mean pressure in the superior vena cava increases from 8.2 to 19.2 mmHg with pulmonary arteriolar resistance ranging from 0.8 to 7.9 Woods units and pulmonary outflow obstruction ranging from 50 to 100%. The percentage flow distribution to the right lung has turned out to be heavily affected by the flow competition and has ranged from 43 to 50% of the total flow to the lungs in the systolic phase, and from 51 to 62% in the diastolic phase. The model allows routinely used clinical indices to be computed, as well as the evaluation of new indices, which is potentially helpful in the clinical assessment of postoperative haemodynamics (e.g. the right-to-left lung flow ratio and the superior vena cava-to-pulmonary flow ratio).