Riccardo Sibilano
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Riccardo Sibilano.
Journal of Clinical Investigation | 2016
Nicolas Gaudenzio; Riccardo Sibilano; Thomas Marichal; Philipp Starkl; Laurent L. Reber; Nicolas Cenac; Benjamin McNeil; Xinzhong Dong; Joseph D. Hernandez; Ronit Sagi-Eisenberg; Ilan Hammel; Axel Roers; Salvatore Valitutti; Mindy Tsai; Eric Espinosa; Stephen J. Galli
Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a and C5a, and endothelin 1, induced human MCs rapidly to secrete small and relatively spherical granule structures, a pattern consistent with the secretion of individual granules. Conversely, activating MCs with anti-IgE increased the time partition between signaling and secretion, which was associated with a period of sustained elevation of intracellular calcium and formation of larger and more heterogeneously shaped granule structures that underwent prolonged exteriorization. Pharmacological inhibition of IKK-β during IgE-dependent stimulation strongly reduced the time partition between signaling and secretion, inhibited SNAP23/STX4 complex formation, and switched the degranulation pattern into one that resembled degranulation induced by substance P. IgE-dependent and substance P-dependent activation in vivo also induced different patterns of mouse MC degranulation that were associated with distinct local and systemic pathophysiological responses. These findings show that cytoplasmic granule secretion from MCs that occurs in response to different activating stimuli can exhibit distinct dynamics and features that are associated with distinct patterns of MC-dependent inflammation.
European Journal of Immunology | 2014
Riccardo Sibilano; Barbara Frossi; Carlo Pucillo
Mast cells regulate the immunological responses causing allergy and autoimmunity, and contribute to the tumor microenvironment through generation and secretion of a broad array of preformed, granule‐stored and de novo synthesized bioactive compounds. The release and production of mast cell mediators is the result of a coordinated signaling machinery, followed by the FcεRI and FcγR antigen ligation. In this review, we present the latest understanding of FcεRI and FcγR signaling, required for the canonical mast cell activation during allergic responses and anaphylaxis. We then describe the cooperation between the signaling of FcR and other recently characterized membrane‐bound receptors (i.e., IL‐33R and thymic stromal lymphopoietin receptor) and their role in the chronic settings, where mast cell activation is crucial for the development and the sustainment of chronic diseases, such as asthma or airway inflammation. Finally, we report how the FcR activation could be used as a therapeutic approach to treat allergic and atopic diseases by mast cell inactivation. Understanding the magnitude and the complexity of mast cell signaling is necessary to identify the mechanisms underlying the potential effector and regulatory roles of mast cells in the biology and pathology of those disease settings in which mast cells are activated.
Journal of Immunology | 2012
Riccardo Sibilano; Barbara Frossi; Marco Calvaruso; Luca Danelli; Elena Betto; Alessandra Dall'Agnese; Claudio Tripodo; Mario P. Colombo; Carlo Pucillo; Giorgia Gri
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor whose activity is modulated by xenobiotics as well as physiological ligands. These compounds may modulate inflammatory responses and contribute to the rising prevalence of allergic diseases observed in industrialized countries. Mast cells (MCs), located within tissues at the boundary of the external environment, represent a potential target of AhR ligands. In this study, we report that murine and human MCs constitutively express AhR, and its activation by the high-affinity ligand 6-formylindolo[3,2-b]carbazole (FICZ) determines a boost in degranulation. On the contrary, repeated exposure to FICZ inhibits MC degranulation. Accordingly, histamine release, in an in vivo passive systemic anaphylactic model, is exacerbated by a single dose and is attenuated by repetitive stimulation of AhR. FICZ-exposed MCs produce reactive oxygen species and IL-6 in response to cAMP-dependent signals. Moreover, AhR-activated MCs produce IL-17, a critical player in chronic inflammation and autoimmunity, suggesting a novel pathway for MC activation in the pathogenesis of these diseases. Indeed, histological analysis of patients with chronic obstructive pulmonary disease revealed an enrichment in AhR/IL-6 and AhR/IL-17 double-positive MCs within bronchial lamina propria. Thus, tissue-resident MCs could translate external chemical challenges through AhR by modulating allergic responses and contributing to the generation of inflammation-related diseases.
Mucosal Immunology | 2015
Laurent L. Reber; Riccardo Sibilano; Kaori Mukai; Stephen J. Galli
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs—such as secreting preformed and/or newly synthesized biologically active products—in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
The Journal of Allergy and Clinical Immunology | 2017
Héloïse Beutier; Caitlin M. Gillis; Bruno Iannascoli; Ophélie Godon; Patrick England; Riccardo Sibilano; Laurent L. Reber; Stephen J. Galli; Mark S. Cragg; Nico van Rooijen; David A. Mancardi; Pierre Bruhns; Friederike Jönsson
Background: Animal models have demonstrated that allergen‐specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (Fc&ggr;Rs). Mouse IgG2a and IgG2b bind activating Fc&ggr;RI, Fc&ggr;RIII, and Fc&ggr;RIV and inhibitory Fc&ggr;RIIB; mouse IgG1 binds only Fc&ggr;RIII and Fc&ggr;RIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis. Objective: We sought to determine which pathways control the induction of IgG1‐, IgG2a‐, and IgG2b‐dependent passive systemic anaphylaxis. Methods: Mice were sensitized with IgG1, IgG2a, or IgG2b anti‐trinitrophenyl mAbs and challenged with trinitrophenyl‐BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for Fc&ggr;Rs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. Fc&ggr;R expression was evaluated on these cells before and after anaphylaxis. Results: Activating Fc&ggr;RIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1‐ and IgG2b‐induced anaphylaxis correlated with the ability of inhibitory Fc&ggr;RIIB to negatively regulate these models of anaphylaxis. Conclusion: We propose that the differential expression of inhibitory Fc&ggr;RIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass–dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG‐dependent reactions in vivo.
The Journal of Allergy and Clinical Immunology | 2016
Philipp Starkl; Thomas Marichal; Nicolas Gaudenzio; Laurent L. Reber; Riccardo Sibilano; Mindy Tsai; Stephen J. Galli
BACKGROUND Type 2 cytokine-related immune responses associated with development of antigen-specific IgE antibodies can contribute to pathology in patients with allergic diseases and to fatal anaphylaxis. However, recent findings in mice indicate that IgE also can enhance defense against honeybee venom. OBJECTIVE We tested whether IgE antibodies, IgE-dependent effector mechanisms, and a local anaphylactic reaction to an unrelated antigen can enhance defense against Russell viper venom (RVV) and determined whether such responses can be influenced by immunization protocol or mouse strain. METHODS We compared the resistance of RVV-immunized wild-type, IgE-deficient, and Fcer1a-deficient mice after injection of a potentially lethal dose of RVV. RESULTS A single prior exposure to RVV enhanced the ability of wild-type mice, but not mice lacking IgE or functional FcεRI, to survive challenge with a potentially lethal amount of RVV. Moreover, IgE-dependent local passive cutaneous anaphylaxis in response to challenge with an antigen not naturally present in RVV significantly enhanced resistance to the venom. Finally, we observed different effects on resistance to RVV or honeybee venom in BALB/c versus C57BL/6 mice that had received a second exposure to that venom before challenge with a high dose of that venom. CONCLUSION These observations illustrate the potential benefit of IgE-dependent effector mechanisms in acquired host defense against venoms. The extent to which type 2 immune responses against venoms can decrease pathology associated with envenomation seems to be influenced by the type of venom, the frequency of venom exposure, and the genetic background of the host.
Journal of Experimental Medicine | 2017
Laurent L. Reber; Caitlin M. Gillis; Philipp Starkl; Friederike Jönsson; Riccardo Sibilano; Thomas Marichal; Nicolas Gaudenzio; Marion Bérard; Stephan Rogalla; Christopher H. Contag; Pierre Bruhns; Stephen J. Galli
Neutrophils have crucial antimicrobial functions but are also thought to contribute to tissue injury upon exposure to bacterial products, such as lipopolysaccharide (LPS). To study the role of neutrophils in LPS-induced endotoxemia, we developed a new mouse model, PMNDTR mice, in which injection of diphtheria toxin induces selective neutrophil ablation. Using this model, we found, surprisingly, that neutrophils serve to protect the host from LPS-induced lethal inflammation. This protective role was observed in conventional and germ-free animal facilities, indicating that it does not depend on a particular microbiological environment. Blockade or genetic deletion of myeloperoxidase (MPO), a key neutrophil enzyme, significantly increased mortality after LPS challenge, and adoptive transfer experiments confirmed that neutrophil-derived MPO contributes importantly to protection from endotoxemia. Our findings imply that, in addition to their well-established antimicrobial properties, neutrophils can contribute to optimal host protection by limiting the extent of endotoxin-induced inflammation in an MPO-dependent manner.
Molecular Immunology | 2015
Riccardo Sibilano; Carlo Pucillo; Giorgia Gri
The activation of the transcription factor aryl hydrocarbon receptor (AhR) is modulated by a wide variety of xenobiotics and ligands deriving from products of metabolism. The study of the contribution of AhR to allergic diseases has gained much interest in recent years. Here we discuss the role that environmental factors and metabolic products, particularly acting on AhR-expressing mast cells (MCs), could have in the development of local allergic/atopic response. Thus, this review will cover: a brief overview of the AhR mechanism of action in the immune system; a description of different AhR ligands and their effects to IgE-mediated MC activation in the allergic response, with particular attention to the role of IL-17; a discussion about the potential involvement of AhR in immune tolerance; and a conclusion on human diseases in which direct AhR activation of MC might have a major impact.
JCI insight | 2017
Laurent L. Reber; Riccardo Sibilano; Philipp Starkl; Axel Roers; Michele A. Grimbaldeston; Mindy Tsai; Nicolas Gaudenzio; Stephen J. Galli
Contact hypersensitivity (CHS) is a common skin disease induced by epicutaneous sensitization to haptens. Conflicting results have been obtained regarding pathogenic versus protective roles of mast cells (MCs) in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. Here we describe a fluorescent imaging approach that enables in vivo selective labeling and tracking of MC secretory granules by real-time intravital 2-photon microscopy in living mice, and permits the identification of such MCs as a potential source of cytokines in different disease models. We show using this method that dermal MCs release their granules progressively into the surrounding microenvironment, but also represent an initial source of the antiinflammatory cytokine IL-10, during the early phase of severe CHS reactions. Finally, using 3 different types of MC-deficient mice, as well as mice in which IL-10 is ablated specifically in MCs, we show that IL-10 production by MCs can significantly limit the inflammation and tissue pathology observed in severe CHS reactions.
Nature Communications | 2016
Riccardo Sibilano; Nicolas Gaudenzio; Marianne K. DeGorter; Laurent L. Reber; Joseph D. Hernandez; Philipp Starkl; Oliwia Zurek; Mindy Tsai; Sonja Zahner; Stephen B. Montgomery; Axel Roers; Mitchell Kronenberg; Stephen J. Galli
Asthma has multiple features, including airway hyperreactivity, inflammation and remodelling. The TNF superfamily member TNFSF14 (LIGHT), via interactions with the receptor TNFRSF14 (HVEM), can support TH2 cell generation and longevity and promote airway remodelling in mouse models of asthma, but the mechanisms by which TNFSF14 functions in this setting are incompletely understood. Here we find that mouse and human mast cells (MCs) express TNFRSF14 and that TNFSF14:TNFRSF14 interactions can enhance IgE-mediated MC signalling and mediator production. In mouse models of asthma, TNFRSF14 blockade with a neutralizing antibody administered after antigen sensitization, or genetic deletion of Tnfrsf14, diminishes plasma levels of antigen-specific IgG1 and IgE antibodies, airway hyperreactivity, airway inflammation and airway remodelling. Finally, by analysing two types of genetically MC-deficient mice after engrafting MCs that either do or do not express TNFRSF14, we show that TNFRSF14 expression on MCs significantly contributes to the development of multiple features of asthma pathology.