Riccardo Wittek
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Riccardo Wittek.
Cell | 1980
Riccardo Wittek; Bernard Moss
A tandemly repeated sequence within the genome of vaccinia virus is cut to fragments of approximately 70 bp by Hinf I, Taq I or Mbo II. The 70 bp repetition was localized within the much larger (10,300 bp) inverted terminal repetition by restriction analysis of cloned DNA fragments and by hybridization of the purified 70 bp repeat to vaccinia virus DNA restriction fragments. The molar abundance of the 70 bp fragment corresponds to a 30 fold repetition at each end of the genome. The repeating restriction endonuclease sites were mapped by agarose gel electrophoresis of partial Hinf I digests of the terminally labeled cloned DNA fragment. The first of 13 repetitive Hinf I sites occurred approximately 150 bp from the end of the cloned DNA. After an intervening sequence of approximately 435 bp, a second series of 17 repetitive Hinf I sites occurred. The DNA between the two blocks of repetitions has a unique sequence containing single Dde I, Alu I and Sau 3A sites. Tandem repeats within the inverted terminal repetition could serve to accelerate self-annealing of single strands of DNA to form circular structures during replication.
Cell | 1987
Christine Bertholet; Erwin Van Meir; Béatrice ten Heggeler-Bordier; Riccardo Wittek
Abstract We describe the unusual structure of a vaccinia virus late mRNA. In these molecules, the protein-coding sequences of a major late structural polypeptide are preceded by long leader RNAs, which in some cases are thousands of nucleotides long. These sequences map to different regions of the viral genome and in one instance are separated from the late gene by more than 100 kb of DNA. Moreover, the leader sequences map either upstream or downstream of the late gene, are transcribed from either DNA strand, and are fused to the late gene coding sequence via a poly(A) stretch. This demonstrates that vaccinia virus produces late mRNAs by tagging the protein-coding sequences onto the 3′ end of other RNAs.
The EMBO Journal | 1986
Christine Bertholet; P Stocco; E Van Meir; Riccardo Wittek
A series of mutations, including 5′ and 3′ deletions, as well as insertions were introduced into the 5′ flanking nucleotide sequence of a vaccinia virus late gene. This DNA has been shown previously to contain all the necessary elements for correct regulation of the gene most probably transcribed by the viral RNA polymerase. To facilitate the assays, the mutated DNA was fused to the chloramphenicol acetyltransferase gene and inserted into the genome of live vaccinia virus. The effects of the mutations on expression of the chimeric gene were studied by both enzyme assays and nuclease S1 analysis. The results showed that 5′ deletions up to about 15 bp from the putative initiation site of transcription still yielded high levels of gene expression. All mutations, however, that deleted the authentic late mRNA start site, abolished promoter activity.
Vaccine | 2000
Pascal Cherpillod; Andrea Tipold; Monika Griot-Wenk; Carmen Cardozo; Ines Schmid; Rosmarie Fatzer; Martina Schobesberger; Rinaldo Zurbriggen; Lukas Bruckner; Florence Roch; Marc Vandevelde; Riccardo Wittek; Andreas Zurbriggen
Canine distemper virus (CDV), a member of the genus Morbillivirus induces a highly infectious, frequently lethal disease in dogs and other carnivores. Current vaccines against canine distemper consisting of attenuated viruses have been in use for many years and have greatly reduced the incidence of distemper in the dog population. However, certain strains may not guarantee adequate protection and others can induce post vaccinal encephalitis. We tested a DNA vaccine for its ability to protect dogs, the natural host of CDV, against distemper. We constructed plasmids containing the nucleocapsid, the fusion, and the attachment protein genes of a virulent canine distemper virus strain. Mice inoculated with these plasmids developed humoral and cellular immune responses against CDV antigens. Dogs immunized with the expression plasmids developed virus-neutralizing antibodies. Significantly, vaccinated dogs were protected against challenge with virulent CDV, whereas unvaccinated animals succumbed to distemper.
Journal of General Virology | 1997
Galmiche Mc; Rindisbacher L; Wels W; Riccardo Wittek; Buchegger F
Recombinant vaccinia virus with tumour cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory molecules. We report the expression of a single chain antibody on the surface of extracellular enveloped vaccinia virus. The wild-type haemagglutinin, an envelope glycoprotein which is not required for viral infection and replication, was replaced by haemagglutinin fusion molecules carrying a single chain antibody directed against the tumour-associated antigen ErbB2. ErbB2 is an epidermal growth factor receptor-related tyrosine kinase overexpressed in a high percentage of human adenocarcinomas. Two fusion proteins carrying the single chain antibody at different NH2-terminal positions were expressed and exposed at the envelope of the corresponding recombinant viruses. The construct containing the antibody at the site of the immunoglobulin-like loop of the haemagglutinin was able to bind solubilized ErbB2. This is the first report of replacement of a vaccinia virus envelope protein by a specific recognition structure and represents a first step towards modifying the host cell tropism of the virus.
Journal of Virology | 2007
Philippe Plattet; Pascal Cherpillod; Dominique Judith Wiener; Ljerka Zipperle; Marc Vandevelde; Riccardo Wittek; Andreas Zurbriggen
ABSTRACT Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F1 subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.
Archives of Virology | 1988
E. Van Meir; Riccardo Wittek
SummaryA 6008 base pair fragment of the vaccinia virus DNA containing the gene for the precursor of the major core protein 4 a, which has been designated P4 a, was sequenced. A long open reading frame (ORF) encoding a protein of molecular weight 102,157 started close to the position where the P4 a mRNA had been mapped. Analysis of the mRNA by S1 nuclease mapping and primer extension indicated that the 5′ end defined by the former method is not the true 5′ end. This suggests that the P4 a coding region is preceded by leader sequences that are not derived from the immediate vicinity of the gene, similar to what has been reported for another late vaccinia virus mRNA. The sequenced DNA contained several further ORFs on the same, or opposite DNA strand, providing further evidence for the close spacing of protein-coding sequences in the viral genome.
Veterinary Pathology | 2007
N Wenzlow; Philippe Plattet; Riccardo Wittek; Andreas Zurbriggen; Andrea Gröne
Signaling lymphocyte activation molecule (SLAM) or CD150 can function as a receptor for the canine distemper virus (CDV) in vitro. The expression of SLAM was studied using immunohistochemistry in order to evaluate the presence and distribution of the receptor in dogs in vivo. Additionally, receptor expression was assessed after experimental infection of dogs with CDV. In 7 control dogs without distemper virus, the receptor was found in various tissues, mostly on cells morphologically identified as lymphocytes and macrophages. In 7 dogs with early distemper lesions characterized by presence of the virus, higher numbers of SLAM-expressing cells were found in multiple tissues recognized as targets of CDV compared with those in control dogs. These findings suggest that SLAM, a putative distemper receptor, is expressed in dogs in vivo. Additionally, virus infection is associated with up-regulation of SLAM, potentially causing an amplification of virus in the host.
Acta Neuropathologica | 2003
Nadine Meertens; Michael Hubert Stoffel; Pascal Cherpillod; Riccardo Wittek; M. Vandevelde; Andreas Zurbriggen
Canine distemper virus (CDV), a mobillivirus related to measles virus causes a chronic progressive demyelinating disease, associated with persistence of the virus in the central nervous system (CNS). CNS persistence of morbilliviruses has been associated with cell-to-cell spread, thereby limiting immune detection. The mechanism of cell-to-cell spread remains uncertain. In the present study we studied viral spread comparing a cytolytic (non-persistent) and a persistent CDV strain in cell cultures. Cytolytic CDV spread in a compact concentric manner with extensive cell fusion and destruction of the monolayer. Persistent CDV exhibited a heterogeneous cell-to-cell pattern of spread without cell fusion and 100-fold reduction of infectious viral titers in supernatants as compared to the cytolytic strain. Ultrastructurally, low infectious titers correlated with limited budding of persistent CDV as compared to the cytolytic strain, which shed large numbers of viral particles. The pattern of heterogeneous cell-to-cell viral spread can be explained by low production of infectious viral particles in only few areas of the cell membrane. In this way persistent CDV only spreads to a small proportion of the cells surrounding an infected one. Our studies suggest that both cell-to-cell spread and limited production of infectious virus are related to reduced expression of fusogenic complexes in the cell membrane. Such complexes consist of a synergistic configuration of the attachment (H) and fusion (F) proteins on the cell surface. F und H proteins exhibited a marked degree of colocalization in cytolytic CDV infection but not in persistent CDV as seen by confocal laser microscopy. In addition, analysis of CDV F protein expression using vaccinia constructs of both strains revealed an additional large fraction of uncleaved fusion protein in the persistent strain. This suggests that the paucity of active fusion complexes is due to restricted intracellular processing of the viral fusion protein.
Veterinary Microbiology | 2001
A Tipold; M. Vandevelde; Riccardo Wittek; Peter F. Moore; Artur Summerfield; Andreas Zurbriggen
Initial non-inflammatory demyelination in canine distemper virus infection (CDV) develops against a background of severe immunosuppression and is therefore, thought to be virus-induced. However, recently we found a marked invasion of T cells throughout the central nervous system (CNS) in dogs with acute distemper despite drastic damage to the immune system. In the present study, this apparent paradox was further investigated by immunophenotyping of lymphocytes, following experimental CDV challenge in vaccinated and non-vaccinated dogs. In contrast to CDV infected, unprotected dogs, vaccinated dogs did not become immunosuppressed and exhibited a strong antiviral immune response following challenge with virulent CDV. In unprotected dogs rapid and drastic lymphopenia was initially due to depletion of T cells. In peripheral blood, CD4(+) T cells were more sensitive and depleted earlier and for a longer time than CD8(+) cells which recovered soon. In the cerebrospinal fluid (CSF) we could observe an increase in the T cell to B cell and CD8(+) to CD4(+) ratios. Thus, partial protection of the CD8(+) cell population could explain why part of the immune function in acute distemper is preserved. As found earlier, T cells invaded the CNS parenchyma in these dogs but also in the protected challenged dogs, which did not develop any CNS disease at all. Since markers of T cell activation were upregulated in both groups of animals, this phenomenon could in part be related to non-specific penetration of activated T cells through the blood brain barrier. However, in diseased animals much larger numbers of T cells were found in the CNS than in the protected dogs, suggesting that massive invasion of T cells in the brain requires CDV expression in the CNS.