Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Betts is active.

Publication


Featured researches published by Richard A. Betts.


Nature | 2000

Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model

Peter M. Cox; Richard A. Betts; Chris D. Jones; Steven A. Spall; Ian J. Totterdell

The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon–climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a ‘business as usual’ scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr-1 is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback.


Nature | 2000

Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

Richard A. Betts

Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular, the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather than mitigating it as intended.


Nature | 2006

Detection of a direct carbon dioxide effect in continental river runoff records

N. Gedney; Peter M. Cox; Richard A. Betts; Olivier Boucher; Chris Huntingford; Peter A. Stott

Continental runoff has increased through the twentieth century despite more intensive human water consumption. Possible reasons for the increase include: climate change and variability, deforestation, solar dimming, and direct atmospheric carbon dioxide (CO2) effects on plant transpiration. All of these mechanisms have the potential to affect precipitation and/or evaporation and thereby modify runoff. Here we use a mechanistic land-surface model and optimal fingerprinting statistical techniques to attribute observational runoff changes into contributions due to these factors. The model successfully captures the climate-driven inter-annual runoff variability, but twentieth-century climate alone is insufficient to explain the runoff trends. Instead we find that the trends are consistent with a suppression of plant transpiration due to CO2-induced stomatal closure. This result will affect projections of freshwater availability, and also represents the detection of a direct CO2 effect on the functioning of the terrestrial biosphere.


Philosophical Transactions of the Royal Society A | 2002

The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases.

Roger A. Pielke; Gregg Marland; Richard A. Betts; Thomas N. Chase; Joseph L. Eastman; John O. Niles; Devdutta Sadananda Niyogi; Steven W. Running

Our paper documents that land-use change impacts regional and global climate through the surface-energy budget, as well as through the carbon cycle. The surface-energy budget effects may be more important than the carbon-cycle effects. However, land-use impacts on climate cannot be adequately quantified with the usual metric of ‘global warming potential’. A new metric is needed to quantify the human disturbance of the Earths surface-energy budget. This ‘regional climate change potential’ could offer a new metric for developing a more inclusive climate protocol. This concept would also implicitly provide a mechanism to monitor potential local-scale environmental changes that could influence biodiversity.


Nature | 2007

Projected increase in continental runoff due to plant responses to increasing carbon dioxide

Richard A. Betts; Olivier Boucher; Matthew D. Collins; Peter M. Cox; P. D. Falloon; Nicola Gedney; Deborah Hemming; Chris Huntingford; Chris D. Jones; David M. H. Sexton; Mark J. Webb

In addition to influencing climatic conditions directly through radiative forcing, increasing carbon dioxide concentration influences the climate system through its effects on plant physiology. Plant stomata generally open less widely under increased carbon dioxide concentration, which reduces transpiration and thus leaves more water at the land surface. This driver of change in the climate system, which we term ‘physiological forcing’, has been detected in observational records of increasing average continental runoff over the twentieth century. Here we use an ensemble of experiments with a global climate model that includes a vegetation component to assess the contribution of physiological forcing to future changes in continental runoff, in the context of uncertainties in future precipitation. We find that the physiological effect of doubled carbon dioxide concentrations on plant transpiration increases simulated global mean runoff by 6 per cent relative to pre-industrial levels; an increase that is comparable to that simulated in response to radiatively forced climate change (11 ± 6 per cent). Assessments of the effect of increasing carbon dioxide concentrations on the hydrological cycle that only consider radiative forcing will therefore tend to underestimate future increases in runoff and overestimate decreases. This suggests that freshwater resources may be less limited than previously assumed under scenarios of future global warming, although there is still an increased risk of drought. Moreover, our results highlight that the practice of assessing the climate-forcing potential of all greenhouse gases in terms of their radiative forcing potential relative to carbon dioxide does not accurately reflect the relative effects of different greenhouse gases on freshwater resources.


BioScience | 2007

Forecasting the Effects of Global Warming on Biodiversity

Daniel B. Botkin; Henrik Saxe; Miguel B. Araújo; Richard A. Betts; Richard H. W. Bradshaw; Tomas Cedhagen; Peter Chesson; Terry P. Dawson; Julie R. Etterson; Daniel P. Faith; Simon Ferrier; Antoine Guisan; Anja Skjoldborg Hansen; David W. Hilbert; Craig Loehle; Chris Margules; Mark New; Matthew J. Sobel; David R. B. Stockwell

ABSTRACT The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche-theory models that group species by habitat (more specifically, by environmental conditions under which a species can persist or does persist), (3) general circulation models and coupled ocean–atmosphere–biosphere models, and (4) species–area curve models that consider all species or large aggregates of species. After outlining the different uses and limitations of these methods, we make eight primary suggestions for improving forecasts. We find that greater use of the fossil record and of modern genetic studies would improve forecasting methods. We note a Quaternary conundrum: While current empirical and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions also point to constructive synergies in the solution to the different problems.


Philosophical Transactions of the Royal Society B | 2010

Implications of climate change for agricultural productivity in the early twenty-first century

Jemma Gornall; Richard A. Betts; Eleanor J. Burke; Robin Clark; Joanne Camp; Kate Willett; Andrew J. Wiltshire

This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified.


Nature | 1997

Contrasting physiological and structural vegetation feedbacks in climate change simulations

Richard A. Betts; Peter M. Cox; Susan E. Lee; F. Ian Woodward

Anthropogenic increases in the atmospheric concentration of carbon dioxide and other greenhouse gases are predicted to cause a warming of the global climate by modifying radiative forcing. Carbon dioxide concentration increases may make a further contribution to warming by inducing a physiological response of the global vegetation—a reduced stomatal conductance, which suppresses transpiration. Moreover, a CO2-enriched atmosphere and the corresponding change in climate may also alter the density of vegetation cover, thus modifying the physicalcharacteristics of the land surface to provide yet another climate feedback. But such feedbacks from changes in vegetation structure have not yet been incorporated into general circulation model predictions of future climate change. Here we use a general circulation model iteratively coupled to an equilibrium vegetation model to quantify the effects of both physiological and structural vegetation feedbacks on a doubled-CO2 climate. On a global scale, changes in vegetation structure are found to partially offset physiological vegetation–climate feedbacks in the long term, but overall vegetation feedbacks provide significant regional-scale effects.


Journal of Hydrometeorology | 2003

Explicit Representation of Subgrid Heterogeneity in a GCM Land Surface Scheme

Richard Essery; M. J. Best; Richard A. Betts; Peter M. Cox; Christopher M. Taylor

Abstract A land surface scheme that may be run with or without a tiled representation of subgrid heterogeneity and includes an implicit atmospheric coupling scheme is described. Simulated average surface air temperatures and diurnal temperature ranges in a GCM using this surface model are compared with climatology. Surface tiling is not found to give a clear improvement in the simulated climate but offers more flexibility in the representation of heterogeneous land surface processes. Using the same meteorological forcing in offline simulations using versions of the surface model with and without tiling, the tiled model gives slightly lower winter temperatures at high latitudes and higher summer temperatures at midlatitudes. When the surface model is coupled to a GCM, reduced evaporation in the tiled version leads to changes in cloud cover and radiation at the surface that enhance these differences.


Nature | 2008

Increasing risk of Amazonian drought due to decreasing aerosol pollution

Peter M. Cox; Phil P. Harris; Chris Huntingford; Richard A. Betts; Matthew D. Collins; Chris Jones; Tim E. Jupp; Jose A. Marengo; Carlos A. Nobre

The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (July–October) rainfall in western Amazonia correlates well with an index of the north–south SST gradient across the equatorial Atlantic (the ‘Atlantic N–S gradient’). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic N–S gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere.

Collaboration


Dive into the Richard A. Betts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose A. Marengo

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge