Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Brain is active.

Publication


Featured researches published by Richard A. Brain.


Environmental Toxicology and Chemistry | 2009

Occurrence of pharmaceuticals and personal care products in fish: Results of a national pilot study in the united states

Alejandro J. Ramirez; Richard A. Brain; Sascha Usenko; Mohammad A. Mottaleb; John G. O'Donnell; Leanne L. Stahl; John B. Wathen; Blaine D. Snyder; Jennifer L. Pitt; Pilar Perez‐Hurtado; Laura L. Dobbins; Bryan W. Brooks; C. Kevin Chambliss

Pharmaceuticals and personal care products are being increasingly reported in a variety of biological matrices, including fish tissue; however, screening studies have presently not encompassed broad geographical areas. A national pilot study was initiated in the United States to assess the accumulation of pharmaceuticals and personal care products in fish sampled from five effluent-dominated rivers that receive direct discharge from wastewater treatment facilities in Chicago, Illinois; Dallas, Texas; Orlando, Florida; Phoenix, Arizona; and West Chester, Pennsylvania, USA. Fish were also collected from the Gila River, New Mexico, USA, as a reference condition expected to be minimally impacted by anthropogenic influence. High performance liquid chromatography-tandem mass spectrometry analysis of pharmaceuticals revealed the presence of norfluoxetine, sertraline, diphenhydramine, diltiazem, and carbamazepine at nanogram-per-gram concentrations in fillet composites from effluent-dominated sampling locations; the additional presence of fluoxetine and gemfibrozil was confirmed in liver tissue. Sertraline was detected at concentrations as high as 19 and 545 ng/g in fillet and liver tissue, respectively. Gas chromatography-tandem mass spectrometry analysis of personal care products in fillet composites revealed the presence of galaxolide and tonalide at maximum concentrations of 2,100 and 290 ng/g, respectively, and trace levels of triclosan. In general, more pharmaceuticals were detected at higher concentrations and with greater frequency in liver than in fillet tissues. Higher lipid content in liver tissue could not account for this discrepancy as no significant positive correlations were found between accumulated pharmaceutical concentrations and lipid content for either tissue type from any sampling site. In contrast, accumulation of the personal care products galaxolide and tonalide was significantly related to lipid content. Results suggest that the detection of pharmaceuticals and personal care products was dependent on the degree of wastewater treatment employed.


Environmental Toxicology and Chemistry | 2004

Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test

Richard A. Brain; David J. Johnson; Sean M. Richards; Hans Sanderson; Paul K. Sibley; Keith R. Solomon

Antibiotics are known to have antichloroplastic properties, but their effects on aquatic higher plants are virtually unknown. In order to address this issue, 25 pharmaceuticals, including 22 antibiotics, were assessed for phytotoxicity to the aquatic higher plant Lemna gibba. A 7-d static-renewal test was used, and plants were treated with 0, 10, 30, 100, 300, and 1,000 microg/L of pharmaceutical-containing growth media. Phytotoxicity was assessed using multiple growth and biochemical endpoints. Effective concentration (EC)50, EC25, and EC10 values as well as tests for significant differences between treatments and controls lowest-observed-effect concentration (LOECs) were calculated for each endpoint. Twelve different classes of antibiotics were assessed; however, only members of the fluoroquinolone, sulfonamide, and tetracycline classes of antibiotics displayed significant phytotoxicity. The most toxic members of each of these classes tested were lomefloxacin, sulfamethoxazole, and chlortetracycline, with wet weight EC25 values of 38, 37, and 114 microg/L, respectively. Injury symptoms were comparatively uniform and consistent among chemical classes while degree of phytotoxicity varied considerably. Both of these criteria varied markedly between classes. Wet mass was consistently the most sensitive endpoint above 100 microg/L; conversely, frond number was the most sensitive below 100 microg/L. Pigment endpoints were significantly less sensitive than growth endpoints.


Environmental Toxicology and Chemistry | 2004

Aquatic persistence of eight pharmaceuticals in a microcosm study

Monica W. Lam; Cora J. Young; Richard A. Brain; David J. Johnson; Mark A. Hanson; Christian J. Wilson; Sean M. Richards; Keith R. Solomon; Scott A. Mabury

The persistence of eight pharmaceuticals from multiple classes was studied in aquatic outdoor field microcosms. A method was developed for the determination of a mixture of acetaminophen, atorvastatin, caffeine, carbamazepine, levofloxacin, sertraline, sulfamethoxazole, and trimethoprim at microg/L levels from surface water of the microcosms using solid phase extraction and high-performance liquid chromatography-ultraviolet (HPLC-UV) and liquid chromatography tandem mass spectrometry (LC-MS-MS). Half-lives in the field ranged from 1.5 to 82 d. Laboratory persistence tests were performed to determine the relative importance of possible loss processes in the microcosms over the course of the study. Results from dark control experiments suggest hydrolysis was not important in the loss of the compounds. No significant differences were observed between measured half-lives of the pharmaceuticals in sunlight-exposed pond water and autoclaved pond water, which suggests photodegradation was important in limiting their persistence, and biodegradation was not an important loss process in surface water over the duration of the study. Observed photoproducts of several of the pharmaceuticals remained photoreactive, which led to further degradation in irradiated surface waters.


Reviews of Environmental Contamination and Toxicology | 2008

Aquatic Plants Exposed to Pharmaceuticals: Effects and Risks

Richard A. Brain; Mark L. Hanson; Keith R. Solomon; Bryan W. Brooks

Pharmaceuticals are biologically active, ubiquitous, low-level contaminants that are continuously introduced into the environment from both human and veterinary applications at volumes comparable to total pesticide loadings. Recent analytical advances have made possible the detection of a number of these compounds in environmental samples, raising concerns over potential nontarget effects to aquatic organisms, especially given the highly specific biologically active nature of these compounds. These concerns become paramount when the evolutionary conservation of metabolic pathways and receptors is taken into consideration, particularly in the case of aquatic plants, where a great deal of homology is displayed between the chloroplast and bacteria, as well as between other metabolic pathways across multiple phyla of biological organization. Common receptors have been identified in plants for a number of antibiotics affecting chloroplast replication (fluoroquinolones) transcription and translation (tetracyclines macrolides, lincosamides, P-aminoglycosides, and pleuromutilins), metabolic pathways such as folate biosynthesis (sulfonamides) and fatty acid biosynthesis (triclosan), as well as other classes of pharmaceuticals that affect sterol biosynthesis (statin-type blood lipid regulators). Toxicological investigations into the potency of these compounds indicates susceptibility across multiple plant species, although sensitivity to these compounds varies widely between blue-green algae, green algae, and higher plants in a rather inconsistent manner, except that Cyanobacteria are largely the most sensitive to antibiotic compounds. This differential sensitivity is likely dependent on differences in metabolic potential as well as uptake kinetics, which has been demonstrated for a number of compounds from another class of biologically active compounds, pesticides. The demonstration of conserved receptors and pathways in plants is not surprising, although it has been largely overlooked in the risk assessment process to date, which typically relies heavily on physiological and/or morphological endpoints for deriving toxicity data. However, a small number of studies have indicated that measuring the response of a pathway- or receptor-specific target in conjunction with a physiological endpoint with direct relatedness can yield sublethal responses that are two to three times more sensitive that the traditional gross morphological endpoints typically employed in risk assessment. The risk assessment for this review was based almost entirely on evaluations of gross morphological endpoints, which generally indicated that the risk pharmaceuticals pose to aquatic plants is generally low, with a few exceptions, particularly blue-green algae exposed to antibiotics, and both green and blue-green algae exposed to triclosan. It is critical to note, however, that the application of sublethal pathway or receptor-specific responses in risk assessment has largely been unconsidered, and future research is needed to elucidate whether evaluating the toxicity of pharmaceuticals using these endpoints provides a more sensitive, subtle, yet meaningful indication of toxicity than the traditional endpoints used in prospective and retrospective risk assessments for aquatic plants.


Environmental Toxicology and Chemistry | 2009

Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas

Laura L. Dobbins; Sascha Usenko; Richard A. Brain; Bryan W. Brooks

Parabens are common antimicrobial agents found in thousands of pharmaceuticals and personal care products. Parabens are introduced into aquatic ecosystems from wastewater treatment plant effluents and have been detected in surface waters in the low microgram per liter range. Although these compounds display low toxicity in mammals, paraben toxicity to aquatic organisms has not been investigated. Standardized acute and subchronic endpoints in larval fish (Pimephales promelas) and cladoceran (Daphnia magna) models were examined for seven different parabens (methyl-, ethyl-, isopropyl-, propyl-, isobutyl-, butyl-, benzylparaben), which encompassed a range of log P values. Paraben 48 h median lethal concentration values (LC50) ranged from 4.0 to 24.6 mg/L in D. magna and 3.3 to >160.0 mg/L in fathead minnow. Growth and reproduction in D. magna had lowest-observed-effect concentrations (LOECs) ranging from 0.12 to 9.0 mg/L and 1.5 to 6.0 mg/L, respectively. Fathead minnow growth was adversely affected at levels ranging from 1.0 to 25.0 mg/L. Aquatic toxicity of the parabens was inversely related to lipophilicity, suggesting that responses using standardized endpoints resulted from narcosis. Utilizing toxicity benchmark concentrations (e.g., LC50s, LOECs) for each compound, chemical toxicity distributions, a probabilistic hazard assessment technique, were developed to assess the probabilities of detecting parabens that elicit a response at or below a given concentration. For the responses assessed in the present study, the 5th centile values (the concentration at which 5% of parabens elicit a response) ranged from 15 microg/L to 2.43 mg/L, with D. magna growth eliciting the lowest 5th centile value and acute D. magna mortality eliciting the highest. The distributions demonstrated that at environmentally relevant concentrations in developed countries there is limited acute or subchronic aquatic hazard of parabens to the organisms and responses examined.


Nature Protocols | 2007

A protocol for conducting 7-day daily renewal tests with Lemna gibba.

Richard A. Brain; Keith R. Solomon

Lemna gibba (a duckweed) is a freshwater macrophyte commonly used in toxicity testing, and Lemna spp are currently the only aquatic higher plants required for evaluation of pesticides under the pesticide registration guidelines of the EPA. The methods currently available for toxicity testing by various organizations and agencies, including ASTM, OECD, EPA and Environment Canada, are largely static or semistatic tests with unspecified renewal intervals (OECD) and may not provide a consistent means of exposure owing to short toxicant half-life in aquatic media, uptake of chemical by plants and evaporation of nutrient media. The procedure outlined here details a simple and efficient 7-day daily static renewal procedure for conducting toxicity tests with L. gibba, the appropriate end points to assess, the statistical criteria necessary for analyzing the toxicity data, as well as the steps required to culture and maintain L. gibba. This protocol is based on a modified version of a widely accepted static method.


Environmental Toxicology and Chemistry | 2008

Comparison of the sensitivities of common in vitro and in vivo assays of estrogenic activity: Application of chemical toxicity distributions

Laura L. Dobbins; Richard A. Brain; Bryan W. Brooks

A number of contaminants in municipal effluent discharges are estrogen agonists to fish. Whereas several in vitro and in vivo techniques have been developed to assess the estrogenic activity of these compounds or ambient environmental samples, previous comparisons of the relative sensitivities of these approaches remain inconclusive. We employed a probabilistic hazard assessment approach using chemical toxicity distributions (CTDs) to perform a novel evaluation of relative sensitivities of six common in vitro and in vivo assays. We predicted that there was an 8.3% (human breast ademocarcinoma cell line, MCF-7, assay), 6.3% (yeast estrogen screen assay), or 1.9% (fish hepatocyte vitellogenin, VTG, assay) probability of detecting a compound in aquatic systems that will elicit an estrogenic response at concentrations at or below 0.1 microg/L, suggesting that the MCF-7 assay was the most sensitive in vitro assay evaluated in this study. The probabilities of eliciting the estrogenic response of VTG induction at a concentration less than 0.1 microg/L in rainbow trout, fathead minnow, and Japanese medaka were determined at 29.9, 26.2, and 18.8%, respectively. Thus, rainbow trout VTG induction was the most sensitive in vivo assay assessed. Subsequently, CTDs may provide a useful technique for hazard assessment of chemical classes for which exposure data are limited and for chemicals with common toxicological mechanisms and modes of action.


International Journal of Life Cycle Assessment | 2015

The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA

Ralph K. Rosenbaum; Assumpció Antón; Xavier Bengoa; Anders Bjørn; Richard A. Brain; Cécile Bulle; Nuno Miguel Dias Cosme; Teunis Johannes Dijkman; Peter Fantke; Mwema Felix; Trudyanne S. Geoghegan; Bernhard Gottesbüren; Carolyn Hammer; Sebastien Humbert; Olivier Jolliet; Ronnie Juraske; Fraser Lewis; Dominique Maxime; Thomas Nemecek; J. Payet; Kati Räsänen; Philippe Roux; Erwin M. Schau; Sandrine Sourisseau; Rosalie van Zelm; Bettina von Streit; Magdalena Wallman

PurposePesticides are applied to agricultural fields to optimise crop yield and their global use is substantial. Their consideration in life cycle assessment (LCA) is affected by important inconsistencies between the emission inventory and impact assessment phases of LCA. A clear definition of the delineation between the product system model (life cycle inventory—LCI, technosphere) and the natural environment (life cycle impact assessment—LCIA, ecosphere) is missing and could be established via consensus building.MethodsA workshop held in 2013 in Glasgow, UK, had the goal of establishing consensus and creating clear guidelines in the following topics: (1) boundary between emission inventory and impact characterisation model, (2) spatial dimensions and the time periods assumed for the application of substances to open agricultural fields or in greenhouses and (3) emissions to the natural environment and their potential impacts. More than 30 specialists in agrifood LCI, LCIA, risk assessment and ecotoxicology, representing industry, government and academia from 15 countries and four continents, met to discuss and reach consensus. The resulting guidelines target LCA practitioners, data (base) and characterisation method developers, and decision makers.Results and discussionThe focus was on defining a clear interface between LCI and LCIA, capable of supporting any goal and scope requirements while avoiding double counting or exclusion of important emission flows/impacts. Consensus was reached accordingly on distinct sets of recommendations for LCI and LCIA, respectively, recommending, for example, that buffer zones should be considered as part of the crop production system and the change in yield be considered. While the spatial dimensions of the field were not fixed, the temporal boundary between dynamic LCI fate modelling and steady-state LCIA fate modelling needs to be defined.Conclusions and recommendationsFor pesticide application, the inventory should report pesticide identification, crop, mass applied per active ingredient, application method or formulation type, presence of buffer zones, location/country, application time before harvest and crop growth stage during application, adherence with Good Agricultural Practice, and whether the field is considered part of the technosphere or the ecosphere. Additionally, emission fractions to environmental media on-field and off-field should be reported. For LCIA, the directly concerned impact categories and a list of relevant fate and exposure processes were identified. Next steps were identified: (1) establishing default emission fractions to environmental media for integration into LCI databases and (2) interaction among impact model developers to extend current methods with new elements/processes mentioned in the recommendations.


Environmental Toxicology and Chemistry | 2012

Recovery of photosynthesis and growth rate in green, blue–green, and diatom algae after exposure to atrazine

Richard A. Brain; Joshua R. Arnie; John R. Porch; Alan J. Hosmer

We evaluated the recovery of photosynthesis and growth rate in green (Pseudokirchneriella subcapitata), blue-green (Anabaena flos-aquae), and diatom (Navicula pelliculosa) algae after pulsed exposure to atrazine. Subsequent to a grow-up period of 24 to 72 h to establish requisite cell density for adequate signal strength to measure photosystem II (PSII) quantum yield, algae were exposed to a pulse of atrazine for 48 h followed by a 48-h recovery period in control media. Photosynthesis was measured at 0, 3, 6, 12, 24, and 48 h of the exposure and recovery phases using pulse amplitude modulation fluorometry; growth rate and cell density were also concomitantly measured at these time points. Exposure to atrazine resulted in immediate, but temporary, inhibition of photosynthesis and growth; however, these effects were transient and fully reversible in the tested species of algae. For all three algal species, no statistically significant reductions (p ≤ 0.05) in growth rate or PSII quantum yield were detected at any of the treatment concentrations 48 h after atrazine was removed from the test system. Effects at test levels up to the highest tested exposure levels were consequently determined to be algistatic (reversible). Both biochemically and physiologically, recovery of photosynthesis and growth rate occur immediately, reaching control levels within hours following exposure. Therefore, pulsed exposure profiles of atrazine typically measured in Midwestern U.S. streams are unlikely to result in biologically meaningful changes in primary production given that the effects of atrazine are temporary and fully reversible in species representative of native populations.


Science of The Total Environment | 2013

Seasonal synchronicity of algal assemblages in three Midwestern agricultural streams having varying concentrations of atrazine, nutrients, and sediment

J. Malia Andrus; Diane Winter; Michael Scanlan; Sean Sullivan; Wease Bollman; J.B. Waggoner; Alan J. Hosmer; Richard A. Brain

Numerous studies characterizing the potential effects of atrazine on algal assemblages have been conducted using micro- or mesocosms; however, few evaluations focused on in situ lotic algal communities, potentially confounding risk assessment conclusions. This exploratory study, conducted at several sites in the midwestern United States where atrazine is commonly used, presents in situ observations of native algal communities relative to atrazine exposure and other parameters. Planktonic and periphytic algae from three streams in three Midwestern states, having historically differing atrazine levels, were sampled over a 16-week period in 2011 encompassing atrazine applications and the summer algal growth period at each site. Changes in abundance, diversity, and composition of algal communities were placed in the context of hydrological, climatic, and water quality parameters (including components sometimes present in agricultural runoff) also collected during the study. Diatoms dominated communities at each of the three sites and periphyton was much more abundant than phytoplankton. As expected, significant variations in algal community and environmental parameters were observed between sites. However, correspondence analysis plots revealed that patterns of temporal variation in algal communities at each site and in periphyton or phytoplankton were dominated by seasonal environmental gradients. Significant concordance in these seasonal patterns was detected among sites and between phytoplankton and periphyton communities (via procrustes Protest analysis), suggesting synchronicity of algal communities across a regional scale. While atrazine concentrations generally exhibited seasonal trends at the study watersheds; no effects on algal abundance, diversity or assemblage structure were observed as a result of atrazine pulses. This lack of response may be due to exposure events of insufficient concentration or duration (consistent with previously reported results) or the composition of the algal assemblages present. This was in contrast to the effects of elevated flow events, which were associated with significant changes in periphyton abundance, diversity and assemblage.

Collaboration


Dive into the Richard A. Brain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge