Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Cerione is active.

Publication


Featured researches published by Richard A. Cerione.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells.

Marc A. Antonyak; Bo Li; Lindsey K. Boroughs; Jared L. Johnson; Joseph E. Druso; Kirsten L. Bryant; David Holowka; Richard A. Cerione

Tumor progression involves the ability of cancer cells to communicate with each other and with neighboring normal cells in their microenvironment. Microvesicles (MV) derived from human cancer cells have received a good deal of attention because of their ability to participate in the horizontal transfer of signaling proteins between cancer cells and to contribute to their invasive activity. Here we show that MV may play another important role in oncogenesis. In particular, we demonstrate that MV shed by two different human cancer cells, MDAMB231 breast carcinoma cells and U87 glioma cells, are capable of conferring onto normal fibroblasts and epithelial cells the transformed characteristics of cancer cells (e.g., anchorage-independent growth and enhanced survival capability) and that this effect requires the transfer of the protein cross-linking enzyme tissue transglutaminase (tTG). We further demonstrate that tTG is not sufficient to transform fibroblasts but rather that it must collaborate with another protein to mediate the transforming actions of the cancer cell-derived MV. Proteomic analyses of the MV derived from MDAMB231 and U87 cells indicated that both these vesicle preparations contained the tTG-binding partner and cross-inking substrate fibronectin (FN). Moreover, we found that tTG cross-links FN in MV from cancer cells and that the ensuing MV-mediated transfers of cross-linked FN and tTG to recipient fibroblasts function cooperatively to activate mitogenic signaling activities and to induce their transformation. These findings highlight a role for MV in the induction of cellular transformation and identify tTG and FN as essential participants in this process.


Oncogene | 2012

RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells

Bo Li; Marc A. Antonyak; Jingwen Zhang; Richard A. Cerione

Vesicular structures called microvesicles (MVs) that are shed from the surfaces of cancer cells are capable of transferring oncogenic cargo to recipient cancer cells, as well as to normal cells, sending mitogenic signals that greatly enhance tumor growth. Because MVs are stable in the circulation, they also may have a key role in secondary colonization and metastasis. Thus, understanding how MVs are generated could have important consequences for interfering with cancer progression. Here we report that the small GTPase RhoA triggers a specific signaling pathway essential for MV biogenesis in various human cancer cells. Inhibiting the activity of different proteins comprising this pathway blocks MV biogenesis in the donor cancer cells and prevents oncogenic transformation in cell culture as well as tumor growth in mice. Although RhoA has often been implicated in human cancer, these findings now highlight a previously unappreciated role for this GTPase in malignant transformation, and demonstrate that blocking MV biogenesis may offer novel approaches for interfering with malignant transformation.


Nature Structural & Molecular Biology | 2009

The molecular basis for the regulation of the cap-binding complex by the importins.

Sandra Martha Gomes Dias; Kristin F. Wilson; Katherine S. Rojas; Andre L.B. Ambrosio; Richard A. Cerione

The binding of capped RNAs to the cap-binding complex (CBC) in the nucleus, and their dissociation from the CBC in the cytosol, represent essential steps in RNA processing. Here we show how the nucleocytoplasmic transport proteins importin-α and importin-β have key roles in regulating these events. As a first step toward understanding the molecular basis for this regulation, we determined a 2.2-Å resolution X-ray structure for a CBC–importin-α complex that provides a detailed picture for how importin-α binds to the CBP80 subunit of the CBC. Through a combination of biochemical studies, X-ray crystallographic information and small-angle scattering experiments, we then determined how importin-β binds to the CBC through its CBP20 subunit. Together, these studies enable us to propose a model describing how importin-β stimulates the dissociation of capped RNA from the CBC in the cytosol following its nuclear export.


Molecular Cancer Therapeutics | 2012

Dibenzophenanthridines as Inhibitors of Glutaminase C and Cancer Cell Proliferation

William P. Katt; Jon W. Erickson; Richard A. Cerione

One hallmark of cancer cells is their adaptation to rely upon an altered metabolic scheme that includes changes in the glycolytic pathway, known as the Warburg effect, and elevated glutamine metabolism. Glutaminase, a mitochondrial enzyme, plays a key role in the metabolism of glutamine in cancer cells, and its inhibition could significantly impact malignant transformation. The small molecule 968, a dibenzophenanthridine, was recently shown to inhibit recombinantly expressed glutaminase C, to block the proliferation and anchorage-independent colony formation of human cancer cells in culture, and to inhibit tumor formation in mouse xenograft models. Here, we examine the structure–activity relationship that leads to 968-based inhibition of glutaminase and cancer cell proliferation, focusing upon a “hot-spot” ring previously identified as critical to 968 activity. We find that the hot-spot ring must be substituted with a large, nonplanar functionality (e.g., a t-butyl group) to bestow activity to the series, leading us to a model whereby the molecule binds glutaminase at a previously undescribed allosteric site. We conduct docking studies to locate potential 968-binding sites and proceed to test a specific set of docking solutions via site-directed mutagenesis. We verify the results from our initial assay of 968 and its analogues by cellular studies using MDA-MB-231 breast cancer cells. Mol Cancer Ther; 11(6); 1269–78. ©2012 AACR.


Drug Discovery Today | 2014

Glutaminase regulation in cancer cells: a druggable chain of events.

William P. Katt; Richard A. Cerione

Metabolism is the process by which cells convert relatively simple extracellular nutrients into energy and building blocks necessary for their growth and survival. In cancer cells, metabolism is dramatically altered compared with normal cells. These alterations are known as the Warburg effect. One consequence of these changes is cellular addiction to glutamine. Because of this, in recent years the enzyme glutaminase has become a key target for small molecule therapeutic intervention. Like many oncotargets, however, glutaminase has a number of upstream partners that might offer additional druggable targets. This review summarizes the work from the current decade surrounding glutaminase and its regulation, and suggests strategies for therapeutic intervention in relevant cases.


Future Medicinal Chemistry | 2013

Therapeutic strategies impacting cancer cell glutamine metabolism

Michael J. Lukey; Kristin F. Wilson; Richard A. Cerione

The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically.


Trends in Molecular Medicine | 2013

Rho GTPases and their roles in cancer metabolism

Kristin F. Wilson; Jon W. Erickson; Marc A. Antonyak; Richard A. Cerione

Recently, the small molecule 968 was found to block the Rho GTPase-dependent growth of cancer cells in cell culture and mouse xenografts, and when the target of 968 was found to be the mitochondrial enzyme glutaminase (GLS1), it revealed a surprising link between Rho GTPases and mitochondrial glutamine metabolism. Signal transduction via the Rho GTPases, together with NF-κB, appears to elevate mitochondrial glutaminase activity in cancer cells, thereby helping cancer cells satisfy their altered metabolic demands. Here, we review what is known about the mechanism of glutaminase activation in cancer cells, compare the properties of two distinct glutaminase inhibitors, and discuss recent findings that shed new light on how glutamine metabolism might affect cancer progression.


Journal of Biological Chemistry | 2009

Cdc42-mTOR Signaling Pathway Controls Hes5 and Pax6 Expression in Retinoic Acid-dependent Neural Differentiation

Makoto Endo; Marc A. Antonyak; Richard A. Cerione

The conditional knockout of the small GTPase Cdc42 from neuroepithelial (NE) and radial glial (RG) cells in the mouse telencephalon has been shown to have a significant impact on brain development by causing these neural progenitor cells to detach from the apical/ventricular surface and to lose their cell identity. This has been attributed to the requirement for Cdc42 in establishing proper apical/basal cell polarity and cell-cell adhesions. In the present study, we provide new insights into the role played by Cdc42 in the maintenance of neural progenitor cells, using the mouse embryonal carcinoma P19 cell line as a model system. We show that the ability of P19 cells to undergo the transition from an Oct3/4-positive, undifferentiated status to microtubule-associated protein 2-positive neurons and glial fibrillary acidic protein-positive astrocytes, upon treatment with retinoic acid (RA), requires RA-induced activation of Cdc42 during the neural cell lineage specification phase. Experiments using chemical inhibitors and RNA interference suggest that the actions of Cdc42 are mediated through signaling pathways that start with fibroblast growth factors and Delta/Notch proteins and lead to Cdc42-dependent mTOR activation, culminating in the up-regulation of Hes5 and Pax6, two transcription factors that are essential for the maintenance of NE and RG cells. The constitutively active Cdc42(F28L) mutant was sufficient to up-regulate Hes5 and Pax6 in P19 cells, even in the absence of RA treatment, ultimately promoting their transition to neural progenitor cells. The ectopic Cdc42 expression also significantly augmented the RA-dependent up-regulation of these transcription factors, resulting in P19 cells maintaining their neural progenitor status but being unable to undergo terminal differentiation. These findings shed new light on how Cdc42 influences neural progenitor cell fate by regulating gene expression.


Cell Reports | 2013

A Mechanism for the Upregulation of EGF Receptor Levels in Glioblastomas

Jingwen Zhang; Marc A. Antonyak; Garima Singh; Richard A. Cerione

Tissue transglutaminase (tTG) is a GTP-binding protein/acyltransferase whose expression is upregulated in glioblastoma and associated with decreased patient survival. Here, we delineate a unique mechanism by which tTG contributes to the development of gliomas by using two glioblastoma cell lines, U87 and LN229, whose growth and survival are dependent on tTG. We show that tTG significantly enhances the signaling activity and lifespan of EGF receptors (EGFRs) in these brain cancer cells. Moreover, overexpressing tTG in T98G glioblastoma cells that normally express low levels of tTG caused a marked upregulation of EGFR expression and transforming activity. Furthermore, we show that tTG accentuates EGFR signaling by blocking c-Cbl-catalyzed EGFR ubiquitylation through the ability of tTG to bind GTP and adopt a specific conformation that enables it to interact with c-Cbl. These findings demonstrate that tTG contributes to gliomagenesis by interfering with EGFR downregulation and, thereby, promoting transformation.


Journal of Biological Chemistry | 2014

A Novel Mechanism by which Tissue Transglutaminase Activates Signaling Events that Promote Cell Survival

Lindsey K. Boroughs; Marc A. Antonyak; Richard A. Cerione

Background: Tissue transglutaminase (tTG) promotes various aspects of oncogenesis, including cell survival. Results: Ectopically expressed tTG in non-transformed cells triggers a survival response that involves c-Src and PI3-kinase. Conclusion: tTG promotes survival by activating PI3-kinase through a c-Src-dependent mechanism. Significance: These findings demonstrate that tTG has an intrinsic capability to promote cell survival and explains how it contributes to oncogenesis. Tissue transglutaminase (tTG) functions as a GTPase and an acyl transferase that catalyzes the formation of protein cross-links. tTG expression is frequently up-regulated in human cancer, where it has been implicated in various aspects of cancer progression, including cell survival and chemo-resistance. However, the extent to which tTG cooperates with other proteins within the context of a cancer cell, versus its intrinsic ability to confer transformed characteristics to cells, is poorly understood. To address this question, we asked what effect the ectopic expression of tTG in a non-transformed cellular background would have on the behavior of the cells. Using NIH3T3 fibroblasts stably expressing a Myc-tagged form of tTG, we found that tTG strongly protected these cells from serum starvation-induced apoptosis and triggered the activation of the PI3-kinase/mTOR Complex 1 (mTORC1)/p70 S6-kinase pathway. We determined that tTG forms a complex with the non-receptor tyrosine kinase c-Src and PI3-kinase, and that treating cells with inhibitors to block tTG function (monodansylcadaverine; MDC) or c-Src kinase activity (PP2) disrupted the formation of this complex, and prevented tTG from activating the PI3-kinase pathway. Moreover, treatment of fibroblasts over-expressing tTG with PP2, or with inhibitors that inactivate components of the PI3-kinase pathway, including PI3-kinase (LY294002) and mTORC1 (rapamycin), ablated the tTG-promoted survival of the cells. These findings demonstrate that tTG has an intrinsic capability to stimulate cell survival through a novel mechanism that activates PI3-kinase signaling events, thus highlighting tTG as a potential target for the treatment of human cancer.

Collaboration


Dive into the Richard A. Cerione's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Li

Cornell University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge