Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. D. Carano is active.

Publication


Featured researches published by Richard A. D. Carano.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover

John Street; Min Bao; Leo Deguzman; Stuart Bunting; Franklin Peale; Napoleone Ferrara; Hope Steinmetz; John Hoeffel; Jeffrey L. Cleland; Ann L. Daugherty; Nicholas van Bruggen; H. Paul Redmond; Richard A. D. Carano; Ellen Filvaroff

Several growth factors are expressed in distinct temporal and spatial patterns during fracture repair. Of these, vascular endothelial growth factor, VEGF, is of particular interest because of its ability to induce neovascularization (angiogenesis). To determine whether VEGF is required for bone repair, we inhibited VEGF activity during secondary bone healing via a cartilage intermediate (endochondral ossification) and during direct bone repair (intramembranous ossification) in a novel mouse model. Treatment of mice with a soluble, neutralizing VEGF receptor decreased angiogenesis, bone formation, and callus mineralization in femoral fractures. Inhibition of VEGF also dramatically inhibited healing of a tibial cortical bone defect, consistent with our discovery of a direct autocrine role for VEGF in osteoblast differentiation. In separate experiments, exogenous VEGF enhanced blood vessel formation, ossification, and new bone (callus) maturation in mouse femur fractures, and promoted bony bridging of a rabbit radius segmental gap defect. Our results at specific time points during the course of healing underscore the role of VEGF in endochondral vs. intramembranous ossification, as well as skeletal development vs. bone repair. The responses to exogenous VEGF observed in two distinct model systems and species indicate that a slow-release formulation of VEGF, applied locally at the site of bone damage, may prove to be an effective therapy to promote human bone repair.


Drug Discovery Today | 2003

Angiogenesis and bone repair.

Richard A. D. Carano; Ellen Filvaroff

The intimate connection, both physical and biochemical, between blood vessels and bone cells has long been recognized. Genetic, biochemical, and pharmacological studies have identified and characterized factors involved in the conversation between endothelial cells (EC) and osteoblasts (OB) during both bone formation and repair. The long-awaited FDA approval of two growth factors, BMP-2 and OP-1, with angiogenic and osteogenic activity confirms the importance of these two processes in human skeletal healing. In this review, the role of osteogenic factors in the adaptive response and interactive function of OB and EC during the multi-step process of bone repair will be discussed.


Nature | 2007

Bv8 regulates myeloid-cell-dependent tumour angiogenesis

Farbod Shojaei; Xiumin Wu; Cuiling Zhong; Lanlan Yu; Xiaohuan Liang; Jenny Yao; Dominique Blanchard; Carlos Bais; Franklin Peale; Nicholas van Bruggen; Calvin Ho; Jed Ross; Martha Tan; Richard A. D. Carano; Y. Gloria Meng; Napoleone Ferrara

Bone-marrow-derived cells facilitate tumour angiogenesis, but the molecular mechanisms of this facilitation are incompletely understood. We have previously shown that the related EG-VEGF and Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), promote both tissue-specific angiogenesis and haematopoietic cell mobilization. Unlike EG-VEGF, Bv8 is expressed in the bone marrow. Here we show that implantation of tumour cells in mice resulted in upregulation of Bv8 in CD11b+Gr1+ myeloid cells. We identified granulocyte colony-stimulating factor as a major positive regulator of Bv8 expression. Anti-Bv8 antibodies reduced CD11b+Gr1+ cell mobilization elicited by granulocyte colony-stimulating factor. Adenoviral delivery of Bv8 into tumours was shown to promote angiogenesis. Anti-Bv8 antibodies inhibited growth of several tumours in mice and suppressed angiogenesis. Anti-Bv8 treatment also reduced CD11b+Gr1+ cells, both in peripheral blood and in tumours. The effects of anti-Bv8 antibodies were additive to those of anti-Vegf antibodies or cytotoxic chemotherapy. Thus, Bv8 modulates mobilization of CD11b+Gr1+ cells from the bone marrow during tumour development and also promotes angiogenesis locally.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect

Martin O. Bergo; Bryant J. Gavino; Jed Ross; Walter K. Schmidt; Christine Hong; Lonnie V. Kendall; Andreas Mohr; Margarita Meta; Harry K. Genant; Yebin Jiang; Erik R. Wisner; Nicholas van Bruggen; Richard A. D. Carano; Susan Michaelis; Stephen M. Griffey; Stephen G. Young

Zmpste24 is an integral membrane metalloproteinase of the endoplasmic reticulum. Biochemical studies of tissues from Zmpste24-deficient mice (Zmpste24−/−) have indicated a role for Zmpste24 in the processing of CAAX-type prenylated proteins. Here, we report the pathologic consequences of Zmpste24 deficiency in mice. Zmpste24−/− mice gain weight slowly, appear malnourished, and exhibit progressive hair loss. The most striking pathologic phenotype is multiple spontaneous bone fractures—akin to those occurring in mouse models of osteogenesis imperfecta. Cortical and trabecular bone volumes are significantly reduced in Zmpste24−/− mice. Zmpste24−/− mice also manifested muscle weakness in the lower and upper extremities, resembling mice lacking the farnesylated CAAX protein prelamin A. Prelamin A processing was defective both in fibroblasts lacking Zmpste24 and in fibroblasts lacking the CAAX carboxyl methyltransferase Icmt but was normal in fibroblasts lacking the CAAX endoprotease Rce1. Muscle weakness in Zmpste24−/− mice can be reasonably ascribed to defective processing of prelamin A, but the brittle bone phenotype suggests a broader role for Zmpste24 in mammalian biology.


Cancer Cell | 2008

Blocking Neuropilin-2 Function Inhibits Tumor Cell Metastasis

Maresa Caunt; Judy Mak; Wei-Ching Liang; Scott Stawicki; Qi Pan; Raymond K. Tong; Joe Kowalski; Calvin Ho; Hani Bou Reslan; Jed Ross; Leanne Berry; Ian Kasman; Constance Zlot; Zhiyong Cheng; Jennifer Le Couter; Ellen Filvaroff; Greg Plowman; Franklin Peale; Dorothy French; Richard A. D. Carano; Alexander W. Koch; Yan Wu; Ryan J. Watts; Marc Tessier-Lavigne; Anil Bagri

Metastasis, which commonly uses lymphatics, accounts for much of the mortality associated with cancer. The vascular endothelial growth factor (VEGF)-C coreceptor, neuropilin-2 (Nrp2), modulates but is not necessary for developmental lymphangiogenesis, and its significance for metastasis is unknown. An antibody to Nrp2 that blocks VEGFC binding disrupts VEGFC-induced lymphatic endothelial cell migration, but not proliferation, in part independently of VEGF receptor activation. It does not affect established lymphatics in normal adult mice but reduces tumoral lymphangiogenesis and, importantly, functional lymphatics associated with tumors. It also reduces metastasis to sentinel lymph nodes and distant organs, apparently by delaying the departure of tumor cells from the primary tumor. Our results demonstrate that Nrp2, which was originally identified as an axon-guidance receptor, is an attractive target for modulating metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes

Marcin Kowanetz; Xiumin Wu; John C. Lee; Martha Tan; Thijs J. Hagenbeek; Xueping Qu; Lanlan Yu; Jed Ross; Nina Korsisaari; Tim C. Cao; Hani Bou-Reslan; Dara Y. Kallop; Robby M. Weimer; Mary J. C. Ludlam; Joshua S. Kaminker; Zora Modrusan; Nicholas van Bruggen; Franklin Peale; Richard A. D. Carano; Y. Gloria Meng; Napoleone Ferrara

Priming of the organ-specific premetastatic sites is thought to be an important yet incompletely understood step during metastasis. In this study, we show that the metastatic tumors we examined overexpress granulocyte-colony stimulating factor (G-CSF), which expands and mobilizes Ly6G+Ly6C+ granulocytes and facilitates their subsequent homing at distant organs even before the arrival of tumor cells. Moreover, G-CSF–mobilized Ly6G+Ly6C+ cells produce the Bv8 protein, which has been implicated in angiogenesis and mobilization of myeloid cells. Anti–G-CSF or anti-Bv8 antibodies significantly reduced lung metastasis. Transplantation of Bv8 null fetal liver cells into lethally irradiated hosts also reduced metastasis. We identified an unexpected role for Bv8: the ability to stimulate tumor cell migration through activation of one of the Bv8 receptors, prokineticin receptor (PKR)-1. Finally, we show that administration of recombinant G-CSF is sufficient to increase the numbers of Ly6G+Ly6C+ cells in organ-specific metastatic sites and results in enhanced metastatic ability of several tumors.


Cancer Research | 2008

MetMAb, the One-Armed 5D5 Anti-c-Met Antibody, Inhibits Orthotopic Pancreatic Tumor Growth and Improves Survival

Hongkui Jin; Renhui Yang; Zhong Zheng; Mally Romero; Jed Ross; Hani Bou-Reslan; Richard A. D. Carano; Ian Kasman; Elaine Mai; Judy Young; Jiping Zha; Zemin Zhang; Sarajane Ross; Ralph Schwall; Gail Colbern; Mark Merchant

The hepatocyte growth factor (HGF) and its receptor, c-Met, have been implicated in driving proliferation, invasion, and poor prognosis in pancreatic cancer. Here, we investigated the expression of HGF and c-Met in primary pancreatic cancers and described in vitro and in vivo models in which MetMAb, a monovalent antibody against c-Met, was evaluated. First, expression of HGF and MET mRNA was analyzed in 59 primary pancreatic cancers and 51 normal samples, showing that both factors are highly expressed in pancreatic cancer. We next examined HGF responsiveness in pancreatic cancer lines to select lines that proliferate in response to HGF. Based on these studies, two lines were selected for further in vivo model development: BxPC-3 (c-Met(+), HGF(-)) and KP4 (c-Met(+), HGF(+)) cells. As BxPC-3 cells are responsive to exogenous HGF, s.c. tumor xenografts were grown in a paracrine manner with purified human HGF provided by osmotic pumps, wherein MetMAb treatment significantly inhibited tumor growth. KP4 cells are autocrine for HGF and c-Met, and MetMAb strongly inhibited s.c. tumor growth. To better model pancreatic cancer and to enable long-term survival studies, an orthotopic model of KP4 was established. MetMAb significantly inhibited orthotopic KP4 tumor growth in 4-week studies monitored by ultrasound and also improved survival in 90-day studies. MetMAb significantly reduced c-Met phosphorylation in orthotopic KP4 tumors with a concomitant decrease in Ki-67 staining. These data suggest that the HGF/c-Met axis plays an important role in the progression of pancreatic cancer and that targeting c-Met therein may have therapeutic value.


Nature Biotechnology | 2010

Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models

Mallika Singh; Anthony Lima; Rafael Molina; Patricia Hamilton; Anne C Clermont; Vidusha Devasthali; Jennifer D. Thompson; Jason H. Cheng; Hani Bou Reslan; Calvin C K Ho; Timothy C Cao; Chingwei V. Lee; Michelle Nannini; Germaine Fuh; Richard A. D. Carano; Hartmut Koeppen; Ron Yu; William F. Forrest; Gregory D. Plowman; Leisa Johnson

The low rate of approval of novel anti-cancer agents underscores the need for better preclinical models of therapeutic response as neither xenografts nor early-generation genetically engineered mouse models (GEMMs) reliably predict human clinical outcomes. Whereas recent, sporadic GEMMs emulate many aspects of their human disease counterpart more closely, their ability to predict clinical therapeutic responses has never been tested systematically. We evaluated the utility of two state-of-the-art, mutant Kras-driven GEMMs—one of non-small-cell lung carcinoma and another of pancreatic adenocarcinoma—by assessing responses to existing standard-of-care chemotherapeutics, and subsequently in combination with EGFR and VEGF inhibitors. Standard clinical endpoints were modeled to evaluate efficacy, including overall survival and progression-free survival using noninvasive imaging modalities. Comparisons with corresponding clinical trials indicate that these GEMMs model human responses well, and lay the foundation for the use of validated GEMMs in predicting outcome and interrogating mechanisms of therapeutic response and resistance.


Nature Chemical Biology | 2011

Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis

Julie Di Paolo; Tao Huang; Mercedesz Balazs; James Barbosa; Kai H. Barck; Brandon J. Bravo; Richard A. D. Carano; James W. Darrow; Douglas R. Davies; Laura DeForge; Lauri Diehl; Ronald E. Ferrando; Steven L. Gallion; Anthony M. Giannetti; Peter Gribling; Vincent Hurez; Sarah G. Hymowitz; Randall Jones; Jeffrey E. Kropf; Wyne P. Lee; Patricia Maciejewski; Scott Mitchell; Hong Rong; Bart L. Staker; J. Andrew Whitney; Sherry Yeh; Wendy B. Young; Christine Yu; Juan Zhang; Karin Reif

Brutons tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes FcγRIII-induced TNFα, IL-1β and IL-6 production. Accordingly, in myeloid- and FcγR-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.


Journal of Bone and Mineral Research | 2005

Angiogenesis Is Required for Successful Bone Induction During Distraction Osteogenesis

Tony D. Fang; Ali Salim; Wei Xia; Randall P. Nacamuli; Samira Guccione; HanJoon M. Song; Richard A. D. Carano; Ellen Filvaroff; Mark D. Bednarski; Amato J. Giaccia; Michael T. Longaker

The role of angiogenesis during mechanically induced bone formation is incompletely understood. The relationship between the mechanical environment, angiogenesis, and bone formation was determined in a rat distraction osteogenesis model. Disruption of either the mechanical environment or endothelial cell proliferation blocked angiogenesis and bone formation. This study further defines the role of the mechanical environment and angiogenesis during distraction osteogenesis.

Collaboration


Dive into the Richard A. D. Carano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge