Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Eigenheer is active.

Publication


Featured researches published by Richard A. Eigenheer.


Nature | 2013

Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1

A. Marijke Keestra; Maria G. Winter; Josef J. Auburger; Simon P. Fräßle; Mariana N. Xavier; Sebastian E. Winter; Anita Kim; Victor Poon; Mariëtta M. Ravesloot; Julian F. T. Waldenmaier; Renée M. Tsolis; Richard A. Eigenheer; Andreas J. Bäumler

Our innate immune system distinguishes microbes from self by detecting conserved pathogen-associated molecular patterns. However, these are produced by all microbes, regardless of their pathogenic potential. To distinguish virulent microbes from those with lower disease-causing potential the innate immune system detects conserved pathogen-induced processes, such as the presence of microbial products in the host cytosol, by mechanisms that are not fully resolved. Here we show that NOD1 senses cytosolic microbial products by monitoring the activation state of small Rho GTPases. Activation of RAC1 and CDC42 by bacterial delivery or ectopic expression of SopE, a virulence factor of the enteric pathogen Salmonella, triggered the NOD1 signalling pathway, with consequent RIP2 (also known as RIPK2)-mediated induction of NF-κB-dependent inflammatory responses. Similarly, activation of the NOD1 signalling pathway by peptidoglycan required RAC1 activity. Furthermore, constitutively active forms of RAC1, CDC42 and RHOA activated the NOD1 signalling pathway. Our data identify the activation of small Rho GTPases as a pathogen-induced process sensed through the NOD1 signalling pathway.


Molecular Biology and Evolution | 2014

Evolutionary Origin and Diversification of Epidermal Barrier Proteins in Amniotes

Bettina Strasser; Veronika Mlitz; Marcela Hermann; Robert H. Rice; Richard A. Eigenheer; Lorenzo Alibardi; Erwin Tschachler; Leopold Eckhart

The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon–intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution.


Journal of Experimental Botany | 2011

Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development

Ehud Katz; Kyung Hwan Boo; Ho Youn Kim; Richard A. Eigenheer; Brett S. Phinney; Vladimir Shulaev; Florence Negre-Zakharov; Avi Sadka; Eduardo Blumwald

Label-free LC-MS/MS-based shot-gun proteomics was used to quantify the differential protein synthesis and metabolite profiling in order to assess metabolic changes during the development of citrus fruits. Our results suggested the occurrence of a metabolic change during citrus fruit maturation, where the organic acid and amino acid accumulation seen during the early stages of development shifted into sugar synthesis during the later stage of citrus fruit development. The expression of invertases remained unchanged, while an invertase inhibitor was up-regulated towards maturation. The increased expression of sucrose-phosphate synthase and sucrose-6-phosphate phosphatase and the rapid sugar accumulation suggest that sucrose is also being synthesized in citrus juice sac cells during the later stage of fruit development.


PLOS Pathogens | 2013

Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

Shirley Luckhart; Cecilia Giulivi; Anna L. Drexler; Yevgeniya Antonova-Koch; Danielle Sakaguchi; Eleonora Napoli; Sarah Wong; Mark S. Price; Richard A. Eigenheer; Brett S. Phinney; Nazzy Pakpour; Jose E. Pietri; Kong Cheung; Martha Georgis; Michael A. Riehle

The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the midgut is necessary for the maintenance of midgut health as reflected in energy homeostasis and tissue repair and renewal.


Proteome Science | 2010

A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development

Ehud Katz; Mario Fon; Richard A. Eigenheer; Brett S. Phinney; Joseph Fass; Dawei Lin; Avi Sadka; Eduardo Blumwald

BackgroundCitrus is one of the most important and widely grown commodity fruit crops. In this study a label-free LC-MS/MS based shot-gun proteomics approach was taken to explore three main stages of citrus fruit development. These approaches were used to identify and evaluate changes occurring in juice sac cells in various metabolic pathways affecting citrus fruit development and quality.ResultsProtein changes in citrus juice sac cells were identified and quantified using label-free shotgun methodologies. Two alternative methods, differential mass-spectrometry (dMS) and spectral counting (SC) were used to analyze protein changes occurring during earlier and late stages of fruit development. Both methods were compared in order to develop a proteomics workflow that could be used in a non-model plant lacking a sequenced genome. In order to resolve the bioinformatics limitations of EST databases from species that lack a full sequenced genome, we established iCitrus. iCitrus is a comprehensive sequence database created by merging three major sources of sequences (HarvEST:citrus, NCBI/citrus/unigenes, NCBI/citrus/proteins) and improving the annotation of existing unigenes. iCitrus provided a useful bioinformatics tool for the high-throughput identification of citrus proteins. We have identified approximately 1500 citrus proteins expressed in fruit juice sac cells and quantified the changes of their expression during fruit development. Our results showed that both dMS and SC provided significant information on protein changes, with dMS providing a higher accuracy.ConclusionOur data supports the notion of the complementary use of dMS and SC for label-free comparative proteomics, broadening the identification spectrum and strengthening the identification of trends in protein expression changes during the particular processes being compared.


Infection and Immunity | 2013

Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells.

Kiem Vu; Richard A. Eigenheer; Brett S. Phinney; Angie Gelli

ABSTRACT Cryptococcus spp. cause fungal meningitis, a life-threatening infection that occurs predominately in immunocompromised individuals. In order for Cryptococcus neoformans to invade the central nervous system (CNS), it must first penetrate the brain endothelium, also known as the blood-brain barrier (BBB). Despite the importance of the interrelation between C. neoformans and the brain endothelium in establishing CNS infection, very little is known about this microenvironment. Here we sought to resolve the cellular and molecular basis that defines the fungal-BBB interface during cryptococcal attachment to, and internalization by, the human brain endothelium. In order to accomplish this by a systems-wide approach, the proteomic profile of human brain endothelial cells challenged with C. neoformans was resolved using a label-free differential quantitative mass spectrometry method known as spectral counting (SC). Here, we demonstrate that as brain endothelial cells associate with, and internalize, cryptococci, they upregulate the expression of several proteins involved with cytoskeleton, metabolism, signaling, and inflammation, suggesting that they are actively signaling and undergoing cytoskeleton remodeling via annexin A2, S100A10, transgelin, and myosin. Transmission electronic microscopy (TEM) analysis demonstrates dramatic structural changes in nuclei, mitochondria, the endoplasmic reticulum (ER), and the plasma membrane that are indicative of cell stress and cell damage. The translocation of HMGB1, a marker of cell injury, the downregulation of proteins that function in transcription, energy production, protein processing, and the upregulation of cyclophilin A further support the notion that C. neoformans elicits changes in brain endothelial cells that facilitate the migration of cryptococci across the BBB and ultimately induce endothelial cell necrosis.


PeerJ | 2014

Human hair shaft proteomic profiling: Individual differences, site specificity and cuticle analysis

Chelsea N. Laatsch; Blythe Durbin-Johnson; David M. Rocke; Sophie Mukwana; Abby Ballard Newland; Michael J. Flagler; Michael Glen Davis; Richard A. Eigenheer; Brett S. Phinney; Robert H. Rice

Hair from different individuals can be distinguished by physical properties. Although some data exist on other species, examination of the individual molecular differences within the human hair shaft has not been thoroughly investigated. Shotgun proteomic analysis revealed considerable variation in profile among samples from Caucasian, African–American, Kenyan and Korean subjects. Within these ethnic groups, prominent keratin proteins served to distinguish individual profiles. Differences between ethnic groups, less marked, relied to a large extent on levels of keratin associated proteins. In samples from Caucasian subjects, hair shafts from axillary, beard, pubic and scalp regions exhibited distinguishable profiles, with the last being most different from the others. Finally, the profile of isolated hair cuticle cells was distinguished from that of total hair shaft by levels of more than 20 proteins, the majority of which were prominent keratins. The cuticle also exhibited relatively high levels of epidermal transglutaminase (TGM3), accounting for its observed low degree of protein extraction by denaturants. In addition to providing insight into hair structure, present findings may lead to improvements in differentiating hair from various ethnic origins and offer an approach to extending use of hair in crime scene evidence for distinguishing among individuals.


PLOS ONE | 2013

Distinguishing Ichthyoses by Protein Profiling

Robert H. Rice; Katie M. Bradshaw; Blythe Durbin-Johnson; David M. Rocke; Richard A. Eigenheer; Brett S. Phinney; Matthias Schmuth; Robert Gruber

To explore the usefulness of protein profiling for characterization of ichthyoses, we here determined the profile of human epidermal stratum corneum by shotgun proteomics. Samples were analyzed after collection on tape circles from six anatomic sites (forearm, palm, lower leg, forehead, abdomen, upper back), demonstrating site-specific differences in profiles. Additional samples were collected from the forearms of subjects with ichthyosis vulgaris (filaggrin (FLG) deficiency), recessive X-linked ichthyosis (steroid sulfatase (STS) deficiency) and autosomal recessive congenital ichthyosis type lamellar ichthyosis (transglutaminase 1 (TGM1) deficiency). The ichthyosis protein expression patterns were readily distinguishable from each other and from phenotypically normal epidermis. In general, the degree of departure from normal was lower from ichthyosis vulgaris than from lamellar ichthyosis, parallel to the severity of the phenotype. Analysis of samples from families with ichthyosis vulgaris and concomitant modifying gene mutations (STS deficiency, GJB2 deficiency) permitted correlation of alterations in protein profile with more complex genetic constellations.


Molecular & Cellular Proteomics | 2010

Detection of Differentially Expressed Basal Cell Proteins by Mass Spectrometry

Viktor Todorović; Bhushan V. Desai; Richard A. Eigenheer; Taofei Yin; Evangeline V. Amargo; Milan Mrksich; Kathleen J. Green; Melanie J. Schroeder Patterson

The ability of cells to modulate interactions with each other and the substrate is essential for epithelial tissue remodeling during processes such as wound healing and tumor progression. However, despite strides made in the field of proteomics, proteins involved in adhesion have been difficult to study. Here, we report a method for the enrichment and analysis of proteins associated with the basal surface of the cell and its underlying matrix. The enrichment involves deroofing the cells with 20 mm ammonium hydroxide and the removal of cytosolic and organellar proteins by stringent water wash. Proteomic profiling was achieved by LC-FTMS, which allowed comparison of differentially expressed or shared proteins under different cell states. First, we analyzed and compared the basal cell components of mouse keratinocytes lacking the cell-cell junction molecule plakoglobin with their control counterparts. Changes in the molecules involved in motility and invasion were detected in plakoglobin-deficient cells, including decreased detection of fibronectin, integrin β4, and FAT tumor suppressor. Second, we assessed the differences in basal cell components between two human oral squamous cell carcinoma lines originating from different sites in the oral cavity (CAL33 and UM-SCC-1). The data show differences between the two lines in the type and abundance of proteins specific to cell adhesion, migration, and angiogenesis. Therefore, the method described here has the potential to serve as a platform to assess proteomic changes in basal cell components including extracellular and adhesion-specific proteins involved in wound healing, cancer, and chronic and acquired adhesion-related disorders.


PLOS ONE | 2012

Differentiating inbred mouse strains from each other and those with single gene mutations using hair proteomics.

Robert H. Rice; Katie M. Bradshaw; Blythe Durbin-Johnson; David M. Rocke; Richard A. Eigenheer; Brett S. Phinney; John P. Sundberg

Mutant laboratory mice with distinctive hair phenotypes are useful for identifying genes responsible for hair diseases. The work presented here demonstrates that shotgun proteomic profiling can distinguish hair shafts from different inbred mouse strains. For this purpose, analyzing the total hair shaft provided better discrimination than analyzing the isolated solubilized and particulate (cross-linked) fractions. Over 100 proteins exhibited significant differences among the 11 strains and 5 mutant stocks across the wide spectrum of strains surveyed. Effects on the profile of single gene mutations causing hair shaft defects were profound. Since the hair shaft provides a discrete sampling of the species proteome, with constituents serving important functions in epidermal appendages and throughout the body, this work provides a foundation for non-invasive diagnosis of genetic diseases of hair and perhaps other tissues.

Collaboration


Dive into the Richard A. Eigenheer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert H. Rice

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Rocke

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ehud Katz

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge