Richard A. Felix
Washington State University Vancouver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard A. Felix.
The Journal of Neuroscience | 2011
Richard A. Felix; Anders Fridberger; Sara Leijon; Albert S. Berrebi; Anna K. Magnusson
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The Ih current determines the timing of the rebound, whereas the T-type Ca2+ current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1–15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals.
Neuroscience | 2005
Christine V. Portfors; Richard A. Felix
The inferior colliculus receives a massive convergence of inputs and in the mustached bat, this convergence leads to the creation of neurons in the inferior colliculus that integrate information across multiple frequency bands. These neurons are tuned to multiple frequency bands or are combination-sensitive; responding best to the combination of two signals of different frequency composition. The importance of combination-sensitive neurons in processing echolocation signals is well described, and it has been thought that combination sensitivity is a neural specialization for echolocation behaviors. Combination sensitivity and other response properties indicative of spectral integration have not been thoroughly examined in the inferior colliculus of non-echolocating mammals. In this study we tested the hypothesis that integration across frequencies occurs in the inferior colliculus of mice. We tested excitatory frequency response areas in the inferior colliculus of unanesthetized mice by varying the frequency of a single tone between 6 and 100 kHz. We then tested combination-sensitive responses by holding one tone at the units best frequency, and varying the frequency and intensity of a second tone. Thirty-two percent of the neurons were tuned to multiple frequency bands, 16% showed combination-sensitive facilitation and another 12% showed combination-sensitive inhibition. These findings suggests that the neural mechanisms underlying processing of complex sounds in the inferior colliculus share some common features among mammals as different as the bat and the mouse.
Hearing Research | 2007
Richard A. Felix; Christine V. Portfors
Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57Bl/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory systems ability to process complex sounds such as speech.
Journal of Neurophysiology | 2013
Richard A. Felix; Katrin Vonderschen; Albert S. Berrebi; Anna K. Magnusson
The superior paraolivary nucleus (SPON) is a prominent cell group in the auditory brain stem that has been increasingly implicated in representing temporal sound structure. Although SPON neurons selectively respond to acoustic signals important for sound periodicity, the underlying physiological specializations enabling these responses are poorly understood. We used in vitro and in vivo recordings to investigate how SPON neurons develop intrinsic cellular properties that make them well suited for encoding temporal sound features. In addition to their hallmark rebound spiking at the stimulus offset, SPON neurons were characterized by spiking patterns termed onset, adapting, and burst in response to depolarizing stimuli in vitro. Cells with burst spiking had some morphological differences compared with other SPON neurons and were localized to the dorsolateral region of the nucleus. Both membrane and spiking properties underwent strong developmental regulation, becoming more temporally precise with age for both onset and offset spiking. Single-unit recordings obtained in young mice demonstrated that SPON neurons respond with temporally precise onset spiking upon tone stimulation in vivo, in addition to the typical offset spiking. Taken together, the results of the present study demonstrate that SPON neurons develop sharp on-off spiking, which may confer sensitivity to sound amplitude modulations or abrupt sound transients. These findings are consistent with the proposed involvement of the SPON in the processing of temporal sound structure, relevant for encoding communication cues.
Brain Structure & Function | 2015
Richard A. Felix; Anna K. Magnusson; Albert S. Berrebi
Abstract The mammalian superior paraolivary nucleus (SPON) is a major source of GABAergic inhibition to neurons in the inferior colliculus (IC), a well-studied midbrain nucleus that is the site of convergence and integration for the majority ascending auditory pathways en route to the cortex. Neurons in the SPON and IC exhibit highly precise responses to temporal sound features, which are important perceptual cues for naturally occurring sounds. To determine how inhibitory input from the SPON contributes to the encoding of temporal information in the IC, a reversible inactivation procedure was conducted to silence SPON neurons, while recording responses to amplitude-modulated tones and silent gaps between tones in the IC. The results show that SPON-derived inhibition shapes responses of onset and sustained units in the IC via different mechanisms. Onset neurons appear to be driven primarily by excitatory inputs and their responses are shaped indirectly by SPON-derived inhibition, whereas sustained neurons are heavily influenced directly by transient offset inhibition from the SPON. The findings also demonstrate that a more complete dissection of temporal processing pathways is critical for understanding how biologically important sounds are encoded by the brain.
Neuroscience | 2012
Richard A. Felix; Alexander Kadner; Albert S. Berrebi
The superior paraolivary nucleus (SPON; alternative abbreviation: SPN for the same nucleus in certain species) is a prominent brainstem structure that provides strong inhibitory input to the auditory midbrain. Previous studies established that SPON neurons encode temporal sound features with high precision. These earlier characterizations of SPON responses were recorded under the influence of ketamine, a dissociative anesthetic agent and known antagonist of N-methyl-d-aspartate glutamate (NMDA) receptors. Because NMDA alters neural responses from the auditory brainstem, single unit extracellular recordings of SPON neurons were performed in the presence and absence of ketamine. In doing so, this study represents the first in vivo examination of the SPON of the mouse. Herein, independent data sets of SPON neurons are characterized that did or did not receive ketamine, as well as neurons that were recorded both prior to and following ketamine administration. In all conditions, SPON neurons exhibited contralaterally driven spikes triggered by the offset of pure tone stimuli. Ketamine lowered both evoked and spontaneous spiking, decreased the sharpness of frequency tuning, and increased auditory thresholds and first-spike latencies. In addition, ketamine limited the range of modulation frequencies to which neurons phase-locked to sinusoidally amplitude-modulated tones.
Neurocomputing | 2006
Patrick D. Roberts; Christine V. Portfors; Nathaniel B. Sawtell; Richard A. Felix
This study investigates the learning dynamics of cartwheel cells in the dorsal cochlear nucleus (DCN). Cartwheel cells are excited by parallel fibers that carry information from various sources, such as auditory stimuli, proprioception and recurrent inputs from higher-order auditory processing. Thus, these cells are thought to be involved in multimodal sensory integration. Extracellular in vivo recordings show that mouse DCN cartwheel cells respond well to auditory stimuli. A model of the DCN is presented that predicts how the auditory response of cartwheel cells adapts to predictable patterns of auditory stimuli. In the model, the spike-timing dependent learning rule at the synapse from parallel fibers onto cartwheel cells explains predictive learning in the response of cartwheel cells to auditory stimuli.
Hearing Research | 2017
Richard A. Felix; Cameron J. Elde; Alexander A. Nevue; Christine V. Portfors
&NA; The neurochemical serotonin (5‐hydroxytryptamine, 5‐HT) is involved in a variety of behavioral functions including arousal, reward, and attention, and has a role in several complex disorders of the brain. In the auditory system, 5‐HT fibers innervate a number of subcortical nuclei, yet the modulatory role of 5‐HT in nearly all of these areas remains poorly understood. In this study, we examined spiking activity of neurons in the dorsal cochlear nucleus (DCN) following iontophoretic application of 5‐HT. The DCN is an early site in the auditory pathway that receives dense 5‐HT fiber input from the raphe nuclei and has been implicated in the generation of auditory disorders marked by neuronal hyperexcitability. Recordings from the DCN in awake mice demonstrated that iontophoretic application of 5‐HT had heterogeneous effects on spiking rate, spike timing, and evoked spiking threshold. We found that 56% of neurons exhibited increases in spiking rate during 5‐HT delivery, while 22% had decreases in rate and the remaining neurons had no change. These changes were similar for spontaneous and evoked spiking and were typically accompanied by changes in spike timing. Spiking increases were associated with lower first spike latencies and jitter, while decreases in spiking generally had opposing effects on spike timing. Cases in which 5‐HT application resulted in increased spiking also exhibited lower thresholds compared to the control condition, while cases of decreased spiking had no threshold change. We also found that the 5‐HT2 receptor subtype likely has a role in mediating increased excitability. Our results demonstrate that 5‐HT can modulate activity in the DCN of awake animals and that it primarily acts to increase neuronal excitability, in contrast to other auditory regions where it largely has a suppressive role. Modulation of DCN function by 5‐HT has implications for auditory processing in both normal hearing and disordered states. HighlightsThe dorsal cochlear nucleus (DCN) of the mouse contains dense innervation from serotonergic fibers.Application of serotonin has heterogeneous effects on sound‐evoked response properties of DCN neurons, but primarily acts to increase excitability.Increased excitability of DCN neurons is largely mediated by the 5‐HT2 receptor.
Neuroscience | 2016
Richard A. Felix; Anna K. Magnusson
The superior paraolivary nucleus (SPON) is a prominent structure in the mammalian auditory brainstem with a proposed role in encoding transient broadband sounds such as vocalized utterances. Currently, the source of excitatory pathways that project to the SPON and how these inputs contribute to SPON function are poorly understood. To shed light on the nature of these inputs, we measured evoked excitatory postsynaptic currents (EPSCs) in the SPON originating from the intermediate acoustic stria and compared them with the properties of EPSCs in the lateral superior olive (LSO) originating from the ventral acoustic stria during auditory development from postnatal day 5 to 22 in mice. Before hearing onset, EPSCs in the SPON and LSO are very similar in size and kinetics. After the onset of hearing, SPON excitation is refined to extremely few (2:1) fibers, with each strengthened by an increase in release probability, yielding fast and strong EPSCs. LSO excitation is recruited from more fibers (5:1), resulting in strong EPSCs with a comparatively broader stimulus-response range after hearing onset. Evoked SPON excitation is comparatively weaker than evoked LSO excitation, likely due to a larger fraction of postsynaptic GluR2-containing Ca2+-impermeable AMPA receptors after hearing onset. Taken together, SPON excitation develops synaptic properties that are suited for transmitting single events with high temporal reliability and the strong, dynamic LSO excitation is compatible with high rate-level sensitivity. Thus, the excitatory input pathways to the SPON and LSO mature to support different decoding strategies of respective coarse temporal and sound intensity information at the brainstem level.
Hearing Research | 2016
Alexander A. Nevue; Richard A. Felix; Christine V. Portfors
Neuromodulators can alter the response properties of sensory neurons, including those in the auditory system. Dopamine, which plays a major role in reward and movement, has been shown to alter neural responses in the auditory brainstem and midbrain. Recently we identified the subparafascicular thalamic nucleus (SPF), part of the A11 dopaminergic cell group, as the source of dopamine to the inferior colliculus (IC). The superior olivary complex (SOC) is also a likely target of dopaminergic projections from the SPF because it receives projections from the SPF and contains fibers and terminals immunoreactive for tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis. However, it is unknown if the projections from the SPF to SOC are dopaminergic, and if single neurons in the SPF project to both the IC and SOC. Using anterograde tracing combined with fluorescent immunohistochemistry, we found that the SPF sends dopaminergic projections to the superior paraolivary nucleus and the medial nucleus of the trapezoid body, but not the lateral superior olive. We confirmed these projections using a retrograde tracer. By making dual retrograde deposits in the IC and SOC, we found that individual dopaminergic cells innervate both the IC and SOC. These results suggest dopaminergic innervation, likely released in a context dependent manner, occurs at multiple levels of the auditory pathway.