Richard A. Frazier
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard A. Frazier.
Biomaterials | 2000
Rebecca J. Green; Richard A. Frazier; Kevin M. Shakesheff; Martyn C. Davies; Clive J. Roberts; Saul J. B. Tendler
Surface plasmon resonance (SPR) is an optical technique that is widely gaining recognition as a valuable tool to investigate biological interactions. SPR offers real time in situ analysis of dynamic surface events and, thus, is capable of defining rates of adsorption and desorption for a range of surface interactions. In this review we highlight the diversity of SPR analysis. Examples of a wide range of applications of SPR are presented, concentrating on work relevant to the analysis of biomaterials. Particular emphasis is given to the use of SPR as a complimentary tool, showing the broad range of techniques that are routinely used alongside SPR analysis.
Journal of Pharmaceutical and Biomedical Analysis | 2010
Richard A. Frazier; E.R. Deaville; Rebecca J. Green; Elisabetta Stringano; Ian Willoughby; John Plant; Irene Mueller-Harvey
Binding parameters for the interactions of four types of tannins: tea catechins, grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins, and sorghum procyanidins (mDP=17), with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction with gelatin were in the range 10(4) to 10(6) M(-1) and in the order: sorghum procyanidins > grape seed proanthocyanidins > mimosa 5-deoxy proanthocyanidins > tea catechins. Interaction with BSA was generally weaker, with equilibrium binding constants of < or =10(3)M(-1) for grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins and tea catechins, and 10(4)M(-1) for the sorghum procyanidins. In all cases the interactions with proteins were exothermic and involved multiple binding sites on the protein. The data are discussed in relation to the structures and the known nutritional effects of the condensed tannins.
Journal of Chromatography A | 2000
Richard A. Frazier; Elizabeth L. Inns; Nicolo Dossi; Jennifer M. Ames; Harry E. Nursten
A rapid capillary electrophoresis method was developed simultaneously to determine artificial sweeteners, preservatives and colours used as additives in carbonated soft drinks. Resolution between all additives occurring together in soft drinks was successfully achieved within a 15-min run-time by employing the micellar electrokinetic chromatography mode with a 20 mM carbonate buffer at pH 9.5 as the aqueous phase and 62 mM sodium dodecyl sulfate as the micellar phase. By using a diode-array detector to monitor the UV-visible range (190-600 nm), the identity of sample components, suggested by migration time, could be confirmed by spectral matching relative to standards.
Electrophoresis | 1999
Richard A. Frazier; Jennifer M. Ames; Harry E. Nursten
Capillary electrophoresis (CE) offers the analyst a number of key advantages for the analysis of the components of foods. CE offers better resolution than, say, high‐performance liquid chromatography (HPLC), and is more adept at the simultaneous separation of a number of components of different chemistries within a single matrix. In addition, CE requires less rigorous sample cleanup procedures than HPLC, while offering the same degree of automation. However, despite these advantages, CE remains under‐utilized by food analysts. Therefore, this review consolidates and discusses the currently reported applications of CE that are relevant to the analysis of foods. Some discussion is also devoted to the development of these reported methods and to the advantages/disadvantages compared with the more usual methods for each particular analysis. It is the aim of this review to give practicing food analysts an overview of the current scope of CE.
Journal of Applied Microbiology | 2009
Gurjot Deepika; Rebecca J. Green; Richard A. Frazier; Dimitrios Charalampopoulos
Aims: To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco‐2 cells.
Biomacromolecules | 2011
Marina Alexandrova Dobreva; Richard A. Frazier; Irene Mueller-Harvey; Luke A. Clifton; A Gea; Rebecca J. Green
The interaction between pentagalloyl glucose (PGG) and two globular proteins, bovine serum albumin (BSA) and ribulose-1,5-bisphosphate carboxylase oxygenase (rubisco), was investigated by isothermal titration calorimetry (ITC). ITC data fit to a binding model consisting of two sets of multiple binding sites, which reveal similarities in the mode of binding of PGG to BSA and rubisco. In both cases, the interaction is characterized by a high number of binding sites, which suggests that binding occurs by a surface adsorption mechanism that leads to coating of the protein surface, which promotes aggregation and precipitation of the PGG-protein complex. This model was confirmed by turbidimetry analysis of the PGG-BSA interaction. Analysis of tryptophan fluorescence quenching during the interaction of PGG with BSA suggests that binding of PGG leads to some conformational changes that are energetically closer to the unfolded state of the BSA structure, because small red shifts in the resulting emission spectra were observed.
Electrophoresis | 2001
Richard A. Frazier
This review article addresses recent advances in the analysis of foods and food components by capillary electrophoresis (CE). CE has found application to a number of important areas of food analysis, including quantitative chemical analysis of food additives, biochemical analysis of protein composition, and others. The speed, resolution and simplicity of CE, combined with low operating costs, make the technique an attractive option for the development of improved methods of food analysis for the new millennium.
Journal of Agricultural and Food Chemistry | 2014
Marina Alexandrova Dobreva; Rebecca J. Green; Irene Mueller-Harvey; Juha-Pekka Salminen; Brendan J. Howlin; Richard A. Frazier
Binding to bovine serum albumin of monomeric (vescalagin and pedunculagin) and dimeric ellagitannins (roburin A, oenothein B, and gemin A) was investigated by isothermal titration calorimetry and fluorescence spectroscopy, which indicated two types of binding sites. Stronger and more specific sites exhibited affinity constants, K1, of 10(4)-10(6) M(-1) and stoichiometries, n1, of 2-13 and dominated at low tannin concentrations. Weaker and less-specific binding sites had K2 constants of 10(3)-10(5) M(-1) and stoichiometries, n2, of 16-30 and dominated at higher tannin concentrations. Binding to stronger sites appeared to be dependent on tannin flexibility and the presence of free galloyl groups. Positive entropies for all but gemin A indicated that hydrophobic interactions dominated during complexation. This was supported by an exponential relationship between the affinity, K1, and the modeled hydrophobic accessible surface area and by a linear relationship between K1 and the Stern-Volmer quenching constant, K(SV).
Journal of Physical Chemistry B | 2008
Luke A. Clifton; Rebecca J. Green; Arwel V. Hughes; Richard A. Frazier
The interaction of wild-type puroindoline-b (Pin-b+) and two mutant forms having single residue substitutions (G46S or W44R) with L-alpha-dipalmitoylphosphatidyl-dl-glycerol (DPPG) as a Langmuir monolayer at the air/water interface was investigated by neutron reflectivity (NR) and Brewster angle microscopy (BAM). NR profiles were fitted using a three-layer model to enable differences in penetration of protein between the lipid headgroup and acyl regions to be determined. The data showed similar surface excesses for each of the three proteins at the interface; however, it was revealed that the depth of penetration of protein into the lipid region differed for each protein with Pin-b+ penetrating further into the acyl region of the lipid compared to the mutant forms of the protein that interacted with the headgroup region only. BAM images revealed that the domain structure of the DPPG monolayers was disrupted when Pin-b+ adsorption had reached equilibrium, suggesting protein penetration had led to compression of the lipid region. In contrast, the domain structure was unaffected by the W44R mutant, suggesting no change in compression of the lipid region and hence little or no penetration of protein into the lipid layer.
Physical Chemistry Chemical Physics | 2011
Luke A. Clifton; Michael R. Sanders; Valeria Castelletto; Sarah E. Rogers; Richard K. Heenan; Cameron Neylon; Richard A. Frazier; Rebecca J. Green
The self-assembly in solution of puroindoline-a (Pin-a), an amphiphilic lipid binding protein from common wheat, was investigated by small angle neutron scattering, dynamic light scattering and size exclusion chromatography. Pin-a was found to form monodisperse prolate ellipsoidal micelles with a major axial radius of 112 ± 4.5 Å and minor axial radius of 40.4 ± 0.18 Å. These protein micelles were formed by the spontaneous self-assembly of 38 Pin-a molecules in solution and were stable over a wide pH range (3.5-11) and at elevated temperatures (20-65 °C). Pin-a micelles could be disrupted upon addition of the non-ionic surfactant dodecyl-β-maltoside, suggesting that the protein self-assembly is driven by hydrophobic forces, consisting of intermolecular interactions between Trp residues located within a well-defined Trp-rich domain of Pin-a.