Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Haugland is active.

Publication


Featured researches published by Richard A. Haugland.


Epidemiology | 2008

High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality.

Timothy J. Wade; Rebecca L. Calderon; Kristen P. Brenner; Elizabeth Sams; Michael J. Beach; Richard A. Haugland; Larry Wymer; Alfred P. Dufour

Background: Culture-based methods of monitoring fecal pollution in recreational waters require 24 to 48 hours to obtain results. This delay leads to potentially inaccurate management decisions regarding beach safety. We evaluated the quantitative polymerase chain reaction (QPCR) as a faster method to assess recreational water quality and predict swimming-associated illnesses. Methods: We enrolled visitors at 4 freshwater Great Lakes beaches, and contacted them 10 to 12 days later to ask about health symptoms experienced since the visit. Water at the beaches was polluted by point sources that carried treated sewage. We tested water samples daily for Enterococcus using QPCR and membrane filtration (EPA Method 1600). Results: We completed 21,015 interviews and tested 1359 water samples. Enterococcus QPCR cell equivalents (CEs) were positively associated with swimming-associated gastrointestinal (GI) illness (adjusted odds ratio per 1 log10 QPCR CE =1.26; 95% confidence interval = 1.06–1.51). The association between GI illness and QPCR CE was stronger among children aged 10 years and below (1.69; 1.24–2.30). Nonenteric illnesses were not consistently associated with Enterococcus QPCR CE exposure, although rash and earache occurred more frequently among swimmers. Enterococcus QPCR CE exposure was more strongly associated with GI illness than Enterococcus measured by membrane filtration. Conclusions: Measurement of the indicator bacteria Enterococci in recreational water using a rapid QPCR method predicted swimming-associated GI illness at freshwater beaches polluted by sewage discharge. Children at 10 years or younger were at greater risk for GI illness following exposure.


Journal of Microbiological Methods | 2002

Evaluation of rapid DNA extraction methods for the quantitative detection of fungi using real-time PCR analysis

Richard A. Haugland; Nichole E. Brinkman; Stephen Vesper

Three comparatively rapid methods for the extraction of DNA from fungal conidia and yeast cells in environmental (air, water and dust) samples were evaluated for use in real-time PCR (TaqMan) analyses. A simple bead milling method was developed to provide sensitive, accurate and precise quantification of target organisms in air and water (tap and surface) samples. However, quantitative analysis of dust samples required further purification of the extracted DNA by a streamlined silica adsorption procedure.


Environmental Health | 2010

Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study.

Timothy J. Wade; Elizabeth Sams; Kristen P. Brenner; Richard A. Haugland; Eunice C. Chern; Michael J. Beach; Larry Wymer; Clifford C. Rankin; David C. Love; Quanlin Li; Rachel T. Noble; Alfred P. Dufour

IntroductionIn the United States and elsewhere, recreational water quality is monitored for fecal indicator bacteria to help prevent swimming-associated illnesses. Standard methods to measure these bacteria take at least 24 hours to obtain results. Molecular approaches such as quantitative polymerase chain reaction (qPCR) can estimate these bacteria faster, in under 3 hours. Previously, we demonstrated that measurements of the fecal indicator bacteria Enterococcus using qPCR were associated with gastrointestinal (GI) illness among swimmers at freshwater beaches. In this paper, we report on results from three marine beach sites.MethodsWe interviewed beach-goers and collected water samples at marine beaches affected by treated sewage discharges in Mississippi in 2005, and Rhode Island and Alabama in 2007. Ten to twelve days later, we obtained information about gastrointestinal, respiratory, eye, ear and skin symptoms by telephone. We tested water samples for fecal indicator organisms using qPCR and other methods.ResultsWe enrolled 6,350 beach-goers. The occurrence of GI illness among swimmers was associated with a log10-increase in exposure to qPCR-determined estimates of fecal indicator organisms in the genus Enterococcus (AOR = 2.6, 95% CI 1.3-5.1) and order Bacteroidales (AOR = 1.9, 95% CI 1.3-2.9). Estimates of organisms related to Clostridium perfringens and a subgroup of organisms in the genus Bacteroides were also determined by qPCR in 2007, as was F+ coliphage, but relationships between these indicators and illness were not statistically significant.ConclusionsThis study provides the first evidence of a relationship between gastrointestinal illness and estimates of fecal indicator organisms determined by qPCR at marine beaches.


Applied and Environmental Microbiology | 2003

Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water.

Nichole E. Brinkman; Richard A. Haugland; Larry Wymer; Muruleedhara N. Byappanahalli; Richard L. Whitman; Stephen Vesper

ABSTRACT Quantitative PCR (QPCR) technology, incorporating fluorigenic 5′ nuclease (TaqMan) chemistry, was utilized for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C. lusitaniae) in water. Known numbers of target cells were added to distilled and tap water samples, filtered, and disrupted directly on the membranes for recovery of DNA for QPCR analysis. The assays sensitivities were between one and three cells per filter. The accuracy of the cell estimates was between 50 and 200% of their true value (95% confidence level). In similar tests with surface water samples, the presence of PCR inhibitory compounds necessitated further purification and/or dilution of the DNA extracts, with resultant reductions in sensitivity but generally not in quantitative accuracy. Analyses of a series of freshwater samples collected from a recreational beach showed positive correlations between the QPCR results and colony counts of the corresponding target species. Positive correlations were also seen between the cell quantities of the target Candida species detected in these analyses and colony counts of Enterococcus organisms. With a combined sample processing and analysis time of less than 4 h, this method shows great promise as a tool for rapidly assessing potential exposures to waterborne pathogenic Candida species from drinking and recreational waters and may have applications in the detection of fecal pollution.


Applied and Environmental Microbiology | 2008

Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

Orin C. Shanks; Emina Atikovic; A. Denene Blackwood; Jingrang Lu; Rachel T. Noble; Jorge W. Santo Domingo; Shawn Seifring; Mano Sivaganesan; Richard A. Haugland

ABSTRACT Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described bovine feces-specific genetic markers and a method for the enumeration of these markers using a Markov chain Monte Carlo approach. Both assays exhibited a range of quantification from 25 to 2 × 106 copies of target DNA, with a coefficient of variation of <2.1%. One of these assays can be multiplexed with an internal amplification control to simultaneously detect the bovine-specific genetic target and presence of amplification inhibitors. The assays detected only cattle fecal specimens when tested against 204 fecal DNA extracts from 16 different animal species and also demonstrated a broad distribution among individual bovine samples (98 to 100%) collected from five geographically distinct locations. The abundance of each bovine-specific genetic marker was measured in 48 individual samples and compared to quantitative PCR-enumerated quantities of rRNA gene sequences representing total Bacteroidetes, Bacteroides thetaiotaomicron, and enterococci in the same specimens. Acceptable assay performance combined with the prevalence of DNA targets across different cattle populations provides experimental evidence that these quantitative assays will be useful in monitoring bovine fecal pollution in ambient waters.


Journal of Occupational and Environmental Medicine | 2007

Development of an Environmental Relative Moldiness Index for Us Homes

Sephen J. Vesper; Craig A. McKinstry; Richard A. Haugland; Larry Wymer; Karen D. Bradham; Peter J. Ashley; David J. Cox; Gary Dewalt; Warren Friedman

Objective: The objective of this study was to establish a national relative moldiness index for homes in the United States. Methods: As part of the Housing and Urban Developments American Healthy Homes Survey, dust samples were collected by vacuuming 2 m2 in the bedrooms plus 2 m2 in the living rooms from a nationally representative 1096 homes in the United States using the Mitest sampler. Five milligrams of sieved (300 &mgr;m pore, nylon mesh) dust was analyzed by mold-specific quantitative polymerase chain reaction for the 36 indicator species in 1096 samples. Results: On the basis of this standardized national sampling and analysis, an “Environmental Relative Moldiness Index” was created with values ranging from about −10 to 20 or above (lowest to highest). Conclusions: The Environmental Relative Moldiness Index scale may be useful for home mold-burden estimates in epidemiological studies.


Journal of Environmental Monitoring | 2004

Quantitative PCR analysis of house dust can reveal abnormal mold conditions

Teija Meklin; Richard A. Haugland; Tiina Reponen; Manju Varma; Zana L. Lummus; David I. Bernstein; Larry Wymer; Stephen Vesper

Indoor mold concentrations were measured in the dust of moldy homes (MH) and reference homes (RH) by quantitative PCR (QPCR) assays for 82 species or related groups of species (assay groups). About 70% of the species and groups were never or only rarely detected. The ratios (MH geometric mean : RH geometric mean) for 6 commonly detected species (Aspergillus ochraceus, A. penicillioides, A. unguis, A. versicolor, Eurotium group, and Cladosporium sphaerospermum) were >1 (Group I). Logistic regression analysis of the sum of the logs of the concentrations of Group I species resulted in a 95% probability for separating MH from RH. These results suggest that it may be possible to evaluate whether a home has an abnormal mold condition by quantifying a limited number of mold species in a dust sample. Also, four common species of Aspergillus were quantified by standard culturing procedures and their concentrations compared to QPCR results. Culturing underestimated the concentrations of these four species by 2 to 3 orders of magnitude compared to QPCR.


Systematic and Applied Microbiology | 2010

Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by qPCR.

Richard A. Haugland; Manju Varma; Mano Sivaganesan; Catherine A. Kelty; Lindsay Peed; Orin C. Shanks

Molecular methods for quantifying defined Bacteroidales species from the human gastrointestinal tract may have important clinical and environmental applications, ranging from diagnosis of infections to fecal source tracking in surface waters. In this study, sequences from the V2 region of the small subunit ribosomal RNA gene were targeted in the development of qPCR assays to quantify DNA from six Bacteroides and one Prevotella species. In silico and experimental analyses suggested that each of the assays was highly discriminatory in detecting DNA from the intended species. Analytical sensitivity, precision and ranges of quantification were demonstrated for each assay by coefficients of variation of less than 2% for cycle threshold measurements over a range from 10 to 4×10(4) target sequence copies. The assays were applied to assess the occurrence and relative abundance of their target sequences in feces from humans and five animal groups as well as in 14 sewage samples from 13 different treatment facilities. Sequences from each of the species were detected at high levels (>10(3)copies/ng total extracted DNA) in human wastes. Sequences were also detected by each assay in all sewage samples and, with exception of the Prevotella sequences, showed highly correlated (R(2)≥0.7) variations in concentrations between samples. In contrast, the occurrence and relative abundance profiles of these sequences differed substantially in the fecal samples from each of the animal groups. These results suggest that analyses for multiple individual Bacteroidales species may be useful in identifying human fecal pollution in environmental waters.


Water Research | 2009

Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater

Manju Varma; Richard Field; M. Stinson; B. Rukovets; Larry Wymer; Richard A. Haugland

A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. These methods were used in the analyses of wastewater samples to investigate their feasibility as alternatives to current fecal indicator bacteria culture methods for predicting the efficiency of viral pathogen removal by standard treatment processes. PMA treatment was effective in preventing qPCR detection of target sequences from non-viable cells. Concentrates of small volume, secondary-treated wastewater samples, collected from a publicly owned treatment works (POTW) under normal operating conditions, had little influence on this effectiveness. Higher levels of total suspended solids, such as those associated with normal primary treatment and all treatment stages during storm flow events, appeared to interfere with PMA effectiveness under the sample preparation conditions employed. During normal operating conditions at three different POTWs, greater reductions were observed in PMA-qPCR detectable target sequences of both Enterococcus and Bacteroidales than in total qPCR detectable sequences. These reductions were not as great as those observed for cultivable fecal indicator bacteria in response to wastewater disinfection. Reductions of PMA-qPCR as well as total qPCR detectable target sequences from enterococci and, to a lesser extent, Bacteroidales correlated well with reductions in infectious viruses during both normal and storm flow operating conditions and therefore may have predictive value in determining the efficiency at which these pathogens are removed.


Applied and Environmental Microbiology | 2009

Quantitative PCR for Genetic Markers of Human Fecal Pollution

Orin C. Shanks; Catherine A. Kelty; Mano Sivaganesan; Manju Varma; Richard A. Haugland

ABSTRACT Assessment of health risk and fecal bacterial loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for quantification of two recently described human-specific genetic markers targeting Bacteroidales-like cell surface-associated genes. Each assay exhibited a range of quantification from 10 to 1 × 106 copies of target DNA. For each assay, internal amplification controls were developed to detect the presence or absence of amplification inhibitors. The assays predominantly detected human fecal specimens and exhibited specificity levels greater than 97% when tested against 265 fecal DNA extracts from 22 different animal species. The abundance of each human-specific genetic marker in primary effluent wastewater samples collected from 20 geographically distinct locations was measured and compared to quantities estimated by real-time PCR assays specific for rRNA gene sequences from total Bacteroidales and enterococcal fecal microorganisms. Assay performances combined with the prevalence of DNA targets in sewage samples provide experimental evidence supporting the potential application of these quantitative methods for monitoring fecal pollution in ambient environmental waters.

Collaboration


Dive into the Richard A. Haugland's collaboration.

Top Co-Authors

Avatar

Manju Varma

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Stephen Vesper

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Larry Wymer

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Mano Sivaganesan

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Orin C. Shanks

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Catherine A. Kelty

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Shawn Siefring

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Alfred P. Dufour

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Eunice C. Chern

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kristen P. Brenner

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge