Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Heyman is active.

Publication


Featured researches published by Richard A. Heyman.


Cell | 1996

A CBP Integrator Complex Mediates Transcriptional Activation and AP-1 Inhibition by Nuclear Receptors

Yasutomi Kamei; Lan Xu; Thorsten Heinzel; Joseph Torchia; Riki Kurokawa; Bernd Gloss; Sheng-Cai Lin; Richard A. Heyman; David W. Rose; Christopher K. Glass; Michael G. Rosenfeld

Nuclear receptors regulate gene expression by direct activation of target genes and inhibition of AP-1. Here we report that, unexpectedly, activation by nuclear receptors requires the actions of CREB-binding protein (CBP) and that inhibition of AP-1 activity is the apparent result of competition for limiting amounts of CBP/p300 in cells. Utilizing distinct domains, CBP directly interacts with the ligand-binding domain of multiple nuclear receptors and with the p160 nuclear receptor coactivators, which upon cloning have proven to be variants of the SRC-1 protein. Because CBP represents a common factor, required in addition to distinct coactivators for function of nuclear receptors, CREB, and AP-1, we suggest that CBP/p300 serves as an integrator of multiple signal transduction pathways within the nucleus.


Cell | 1992

9-cis retinoic acid is a high affinity ligand for the retinoid X receptor

Richard A. Heyman; David J. Mangelsdorf; Jacqueline A. Dyck; Robert B. Stein; Gregor Eichele; Ronald M. Evans; Christina Thaller

All-trans retinoic acid (RA) has previously been shown to modulate the transcriptional properties of the retinoic acid receptor (RAR) and retinoid X receptor (RXR). The inability of all-trans RA to bind to RXR suggests that it may be metabolized to a more active high affinity ligand. We report here an experimental approach that has identified 9-cis RA as an RXR ligand. It is up to 40-fold more potent than all-trans RA in transfection assays and binds with high affinity. The production of 9-cis RA in cultured cells and the identification of this molecule in liver and kidney demonstrates the existence of this molecule in living organisms. The discovery of this novel hormone points to the key role retinoid metabolism may have in generating new signaling pathways.


The EMBO Journal | 1996

PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene.

Kristina Schoonjans; Julia Peinado-Onsurbe; Anne-Marie Lefebvre; Richard A. Heyman; Michael R. Briggs; Samir S. Deeb; Bart Staels; Johan Auwerx

Increased activity of lipoprotein lipase (LPL) may explain the hypotriglyceridemic effects of fibrates, thiazolidinediones and fatty acids, which are known activators (and/or ligands) of the various peroxisome proliferator‐activated receptors (PPARs). Treatment with compounds which activate preferentially PPARalpha, such as fenofibrate, induced LPL expression exclusively in rat liver. In contrast, the antidiabetic thiazolidinedione BRL 49653, a high affinity ligand for PPARgamma, had no effect on liver, but induced LPL expression in rat adipose tissue. In the hepatocyte cell line AML‐12, fenofibric acid, but not BRL 49653, induced LPL mRNA, whereas in 3T3‐L1 preadipocytes, the PPARgamma ligand induced LPL mRNA levels much quicker and to a higher extent than fenofibric acid. In both the in vivo and in vitro studies, inducibility by either PPARalpha or gamma activators, correlated with the tissue distribution of the respective PPARs: an adipocyte‐restricted expression of PPARgamma, whereas PPARalpha was expressed predominantly in liver. A sequence element was identified in the human LPL promoter that mediates the functional responsiveness to fibrates and thiazolidinediones. Methylation interference and gel retardation assays demonstrated that a PPARalpha or gamma and the 9‐cis retinoic acid receptor (RXR) heterodimers bind to this sequence −169 TGCCCTTTCCCCC −157. These data provide evidence that transcriptional activation of the LPL gene by fibrates and thiazolidinediones is mediated by PPAR‐RXR heterodimers and contributes significantly to their hypotriglyceridemic effects in vivo. Whereas thiazolidinediones predominantly affect adipocyte LPL production through activation of PPARgamma, fibrates exert their effects mainly in the liver via activation of PPARalpha.


Journal of Clinical Investigation | 2004

Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c

Mitsuhiro Watanabe; Sander M. Houten; Li Wang; Antonio Moschetta; David J. Mangelsdorf; Richard A. Heyman; David D. Moore; Johan Auwerx

We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) alpha and beta, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXR alpha and LXR beta. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.


Developmental Cell | 2002

Redundant pathways for negative feedback regulation of bile acid production.

Li Wang; Yoon-Kwang Lee; Donnie Bundman; Yunqing Han; Sundararajah Thevananther; Chang-Soo Kim; Steven S. Chua; Ping Wei; Richard A. Heyman; Michael Karin; David D. Moore

The orphan nuclear hormone receptor SHP has been proposed to have a key role in the negative feedback regulation of bile acid production. Consistent with this, mice lacking the SHP gene exhibit mild defects in bile acid homeostasis and fail to repress cholesterol 7-alpha-hydroxylase expression in response to a specific agonist for the bile acid receptor FXR. However, this repression is retained in SHP null mice fed bile acids, demonstrating the existence of compensatory repression pathways of bile acid signaling. We provide evidence for two such pathways, based on activation of the xenobiotic receptor PXR or the c-Jun N-terminal kinase JNK. We conclude that redundant mechanisms regulate this critical aspect of cholesterol homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identification of macrophage liver X receptors as inhibitors of atherosclerosis

Rajendra K. Tangirala; Eric D. Bischoff; Sean B. Joseph; Brandee L. Wagner; Robert Walczak; Bryan A. Laffitte; Chris L. Daige; Diane Thomas; Richard A. Heyman; David J. Mangelsdorf; Xuping Wang; Aldons J. Lusis; Peter Tontonoz; Ira G. Schulman

Recent studies have identified the liver X receptors (LXRα and LXRβ) as important regulators of cholesterol metabolism and transport. LXRs control transcription of genes critical to a range of biological functions including regulation of high density lipoprotein cholesterol metabolism, hepatic cholesterol catabolism, and intestinal sterol absorption. Although LXR activity has been proposed to be critical for physiologic lipid metabolism and transport, direct evidence linking LXR signaling pathways to the pathogenesis of cardiovascular disease has yet to be established. In this study bone marrow transplantations were used to selectively eliminate macrophage LXR expression in the context of murine models of atherosclerosis. Our results demonstrate that LXRs are endogenous inhibitors of atherogenesis. Additionally, elimination of LXR activity in bone marrow-derived cells mimics many aspects of Tangier disease, a human high density lipoprotein deficiency, including aberrant regulation of cholesterol transporter expression, lipid accumulation in macrophages, splenomegaly, and increased atherosclerosis. These results identify LXRs as targets for intervention in cardiovascular disease.


Cancer Research | 2012

ARN-509: A Novel Antiandrogen for Prostate Cancer Treatment

Nicola J. Clegg; John Wongvipat; James Joseph; Chris Tran; Samedy Ouk; Anna Dilhas; Yu Chen; Kate Grillot; Eric D. Bischoff; Ling Cai; Anna Aparicio; Steven Dorow; Vivek K. Arora; Gang Shao; Jing Qian; Hong Zhao; Guangbin Yang; Chunyan Cao; John Sensintaffar; Teresa Wasielewska; Mark R. Herbert; Celine Bonnefous; Beatrice Darimont; Howard I. Scher; Peter Smith-Jones; Mark Klang; Nicholas D. Smith; Elisa de Stanchina; Nian Wu; Ouathek Ouerfelli

Continued reliance on the androgen receptor (AR) is now understood as a core mechanism in castration-resistant prostate cancer (CRPC), the most advanced form of this disease. While established and novel AR pathway-targeting agents display clinical efficacy in metastatic CRPC, dose-limiting side effects remain problematic for all current agents. In this study, we report the discovery and development of ARN-509, a competitive AR inhibitor that is fully antagonistic to AR overexpression, a common and important feature of CRPC. ARN-509 was optimized for inhibition of AR transcriptional activity and prostate cancer cell proliferation, pharmacokinetics, and in vivo efficacy. In contrast to bicalutamide, ARN-509 lacked significant agonist activity in preclinical models of CRPC. Moreover, ARN-509 lacked inducing activity for AR nuclear localization or DNA binding. In a clinically valid murine xenograft model of human CRPC, ARN-509 showed greater efficacy than MDV3100. Maximal therapeutic response in this model was achieved at 30 mg/kg/d of ARN-509, whereas the same response required 100 mg/kg/d of MDV3100 and higher steady-state plasma concentrations. Thus, ARN-509 exhibits characteristics predicting a higher therapeutic index with a greater potential to reach maximally efficacious doses in man than current AR antagonists. Our findings offer preclinical proof of principle for ARN-509 as a promising therapeutic in both castration-sensitive and castration-resistant forms of prostate cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor

Thierry Claudel; Mark D. Leibowitz; Catherine Fievet; Anne Tailleux; Brandee L. Wagner; Joyce J. Repa; Gérard Torpier; Jean Marc A Lobaccaro; James R. Paterniti; David J. Mangelsdorf; Richard A. Heyman; Johan Auwerx

A common feature of many metabolic pathways is their control by retinoid X receptor (RXR) heterodimers. Dysregulation of such metabolic pathways can lead to the development of atherosclerosis, a disease influenced by both systemic and local factors. Here we analyzed the effects of activation of RXR and some of its heterodimers in apolipoprotein E −/− mice, a well established animal model of atherosclerosis. An RXR agonist drastically reduced the development of atherosclerosis. In addition, a ligand for the peroxisome proliferator-activated receptor (PPAR)γ and a dual agonist of both PPARα and PPARγ had moderate inhibitory effects. Both RXR and liver X receptor (LXR) agonists induced ATP-binding cassette protein 1 (ABC-1) expression and stimulated ABC-1-mediated cholesterol efflux from macrophages from wild-type, but not from LXRα and β double −/−, mice. Hence, activation of ABC-1-mediated cholesterol efflux by the RXR/LXR heterodimer might contribute to the beneficial effects of rexinoids on atherosclerosis and warrant further evaluation of RXR/LXR agonists in prevention and treatment of atherosclerosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Macrophage Liver X Receptor Is Required for Antiatherogenic Activity of LXR Agonists

Nancy Levin; Eric D. Bischoff; Chris L. Daige; Diane Thomas; Calvin T. Vu; Richard A. Heyman; Rajendra K. Tangirala; Ira G. Schulman

Objective— Complications of atherosclerotic cardiovascular disease due to elevated blood cholesterol levels are the major cause of death in the Western world. The liver X receptors, LXR&agr; and LXR&bgr; (LXRs), are ligand-dependent transcription factors that act as cholesterol sensors and coordinately control transcription of genes involved in cholesterol and lipid homeostasis as well as macrophage inflammatory gene expression. LXRs regulate cholesterol balance through activation of ATP-binding cassette transporters that promote cholesterol transport and excretion from the liver, intestine, and macrophage. Although LXR agonists are known to delay progression of atherosclerosis in mouse models, their ability to abrogate preexisting cardiovascular disease by inducing regression and stabilization of established atherosclerotic lesions has not been addressed. Methods and Results— We demonstrate that LXR agonist treatment increases ATP-binding cassette transporter expression within preexisting atherosclerotic lesions, resulting in regression of these lesions as well as remodeling from vulnerable to stable lesions and a reduction in macrophage content. Further, using macrophage-selective LXR-deficient mice created by bone marrow transplantation, we provide the first evidence that macrophage LXR expression is necessary for the atheroprotective actions of an LXR agonist. Conclusions— These data substantiate that drugs targeting macrophage LXR activity may offer therapeutic benefit in the treatment of atherosclerotic cardiovascular disease.


Molecular and Cellular Biology | 1995

Activation of retinoid X receptors induces apoptosis in HL-60 cell lines.

Laszlo Nagy; Vilmos Thomazy; Gregory L. Shipley; László Fésüs; William W. Lamph; Richard A. Heyman; Roshantha A. S. Chandraratna; Peter J. A. Davies

Retinoids induce myeloblastic leukemia (HL-60) cells to differentiate into granulocytes, which subsequently die by apoptosis. Retinoid action is mediated through at least two classes of nuclear receptors: retinoic acid receptors, which bind both all-trans retinoic acid and 9-cis retinoic acid, and retinoid X receptors, which bind only 9-cis retinoic acid. Using receptor-selective synthetic retinoids and HL-60 cell sublines with different retinoid responsiveness, we have investigated the contribution that each class of receptors makes to the processes of cellular differentiation and death. Our results demonstrate that ligand activation of retinoic acid receptors is sufficient to induce differentiation, whereas ligand activation of retinoid X receptors is essential for the induction of apoptosis in HL-60 cell lines.

Collaboration


Dive into the Richard A. Heyman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Mangelsdorf

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. A. Davies

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Shao

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Christina Thaller

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David D. Moore

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge