Richard A. Holland
Bangor University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard A. Holland.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Kasper Thorup; Isabelle-Anne Bisson; Melissa S. Bowlin; Richard A. Holland; John C. Wingfield; Marilyn Ramenofsky; Martin Wikelski
Billions of songbirds migrate several thousand kilometers from breeding to wintering grounds and are challenged with crossing ecological barriers and facing displacement by winds along the route. A satisfactory explanation of long-distance animal navigation is still lacking, partly because of limitations on field-based study. The navigational tasks faced by adults and juveniles differ fundamentally, because only adults migrate toward wintering grounds known from the previous year. Here, we show by radio tracking from small aircraft that only adult, and not juvenile, long-distance migrating white-crowned sparrows rapidly recognize and correct for a continent-wide displacement of 3,700 km from the west coast of North America to previously unvisited areas on the east coast. These results show that the learned navigational map used by adult long-distance migratory songbirds extends at least on a continental scale. The juveniles with less experience rely on their innate program to find their distant wintering areas and continue to migrate in the innate direction without correcting for displacement.
Nature | 2006
Richard A. Holland; Kasper Thorup; Maarten J. Vonhof; William W. Cochran; Martin Wikelski
Bats famously orientate at night by echolocation, but this works over only a short range, and little is known about how they navigate over longer distances. Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Earths magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark.
PLOS ONE | 2010
Martin Wikelski; Jerry Moxley; Alexander Eaton-Mordas; Margarita M. López-Uribe; Richard A. Holland; David Moskowitz; David W. Roubik; Roland Kays
Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators.
The Journal of Experimental Biology | 2009
Richard A. Holland; Kasper Thorup; Anna Gagliardo; Isabelle-Anne Bisson; Elise M. H. Knecht; David Mizrahi; Martin Wikelski
SUMMARY The identification of the sensory cues and mechanisms by which migratory birds are able to reach the same breeding and wintering grounds year after year has eluded biologists despite more than 50 years of intensive study. While a number of environmental cues have been proposed to play a role in the navigation of birds, arguments still persist about which cues are essential for the experience based navigation shown by adult migrants. To date, few studies have tested the sensory basis of navigational cues used during actual migration in the wild: mainly laboratory based studies or homing during the non-migratory season have been used to investigate this behaviour. Here we tested the role of olfactory and magnetic cues in the migration of the catbird (Dumetella carolinensis) by radio tracking the migration of birds with sensory manipulations during their actual migratory flights. Our data suggest that adult birds treated with zinc sulphate to produce anosmia were unable to show the same orientation as control adults, and instead reverted to a direction similar to that shown by juveniles making their first migration. The magnetic manipulation had no effect on the orientation of either adults or juveniles. These results allow us to propose that the olfactory sense may play a role in experience based migration in adult catbirds. While the olfactory sense has been shown to play a role in the homing of pigeons and other birds, this is the first time it has been implicated in migratory orientation.
PLOS ONE | 2008
Richard A. Holland; Joseph L. Kirschvink; Thomas G. Doak; Martin Wikelski
While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earths magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals.
PLOS ONE | 2009
Richard A. Holland; Martin Wikelski; Franz Kümmeth; Carlos Bosque
Background Steatornis caripensis (the oilbird) is a very unusual bird. It supposedly never sees daylight, roosting in huge aggregations in caves during the day and bringing back fruit to the cave at night. As a consequence a large number of the seeds from the fruit they feed upon germinate in the cave and spoil. Methodology/Principal Findings Here we use newly developed GPS/acceleration loggers with remote UHF readout to show that several assumptions about the behaviour of Steatornis caripensis need to be revised. On average, they spend only every 3rd day in a cave, individuals spent most days sitting quietly in trees in the rainforest where they regurgitate seeds. Conclusions/Significance This provides new data on the extent of seed dispersal and the movement ecology of Steatornis caripensis. It suggests that Steatornis caripensis is perhaps the most important long-distance seed disperser in Neotropical forests. We also show that colony-living comes with high activity costs to individuals.
The Journal of Experimental Biology | 2004
Richard A. Holland; Dean A. Waters; Jeremy M. V. Rayner
SUMMARY Rousettus aegyptiacus Geoffroy 1810 is a member of the only genus of Megachiropteran bats to use vocal echolocation, but the structure of its brief, click-like signal is poorly described. Although thought to have a simple echolocation system compared to that of Microchiroptera, R. aegyptiacus is capable of good obstacle avoidance using its impulse sonar. The energy content of the signal was at least an order of magnitude smaller than in Microchiropteran bats and dolphins (approximately 4×10–8 J m–2). Measurement of the duration, amplitude and peak frequency demonstrate that the signals of this animal are broadly similar in structure and duration to those of dolphins. Gabor functions were used to model signals and to estimate signal parameters, and the quality of the Gabor function fit to the early part of the signal demonstrates that the echolocation signals of R. aegyptiacus match the minimum spectral spread for their duration and amplitude and are thus well matched to its best hearing sensitivity. However, the low energy content of the signals and short duration should make returning echoes difficult to detect. The performance of R. aegyptiacus in obstacle avoidance experiments using echolocation therefore remains something of a conundrum.
The Journal of Experimental Biology | 2003
Richard A. Holland
SUMMARY The question of whether homing pigeons use visual landmarks for orientation from distant, familiar sites is an unresolved issue in the field of avian navigation. Where evidence has been found, the question still remains as to whether the landmarks are used independent of the map and compass mechanism for orientation that is so important to birds. Recent research has challenged the extent to which experiments that do not directly manipulate the visual sense can be used as evidence for compass-independent orientation. However, it is proposed that extending a new technique for research on vision in homing to include manipulation of the compasses used by birds might be able to resolve this issue. The effect of the structure of the visual sense of the homing pigeon on its use of visual landmarks is also considered.
PLOS ONE | 2009
Isabelle-Anne Bisson; Kamran Safi; Richard A. Holland
Background How migration evolved represents one of the most poignant questions in evolutionary biology. While studies on the evolution of migration in birds are well represented in the literature, migration in bats has received relatively little attention. Yet, more than 30 species of bats are known to migrate annually from breeding to non-breeding locations. Our study is the first to test hypotheses on the evolutionary history of migration in bats using a phylogenetic framework. Methods and Principal Findings In addition to providing a review of bat migration in relation to existing hypotheses on the evolution of migration in birds, we use a previously published supertree to formulate and test hypotheses on the evolutionary history of migration in bats. Our results suggest that migration in bats has evolved independently in several lineages potentially as the need arises to track resources (food, roosting site) but not through a series of steps from short- to long-distance migrants, as has been suggested for birds. Moreover, our analyses do not indicate that migration is an ancestral state but has relatively recently evolved in bats. Our results also show that migration is significantly less likely to evolve in cave roosting bats than in tree roosting species. Conclusions and Significance This is the first study to provide evidence that migration has evolved independently in bat lineages that are not closely related. If migration evolved as a need to track seasonal resources or seek adequate roosting sites, climate change may have a pivotal impact on bat migratory habits. Our study provides a strong framework for future research on the evolution of migration in chiropterans.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Richard A. Holland; Ivailo M. Borissov; Bjoern M. Siemers
Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa.