Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Lankau is active.

Publication


Featured researches published by Richard A. Lankau.


Science | 2007

Mutual Feedbacks Maintain Both Genetic and Species Diversity in a Plant Community

Richard A. Lankau; Sharon Y. Strauss

The forces that maintain genetic diversity among individuals and diversity among species are usually studied separately. Nevertheless, diversity at one of these levels may depend on the diversity at the other. We have combined observations of natural populations, quantitative genetics, and field experiments to show that genetic variation in the concentration of an allelopathic secondary compound in Brassica nigra is necessary for the coexistence of B. nigra and its competitor species. In addition, the diversity of competing species was required for the maintenance of genetic variation in the trait within B. nigra. Thus, conservation of species diversity may also necessitate maintenance of the processes that sustain the genetic diversity of each individual species.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Evolutionary limits ameliorate the negative impact of an invasive plant

Richard A. Lankau; Victoria Nuzzo; Greg Spyreas; Adam S. Davis

Invasive species can quickly transform biological communities due to their high abundance and strong impacts on native species, in part because they can be released from the ecological forces that limit native populations. However, little is known about the long-term dynamics of invasions; do invaders maintain their dominant status over long time spans, or do new ecological and evolutionary forces eventually develop to limit their populations? Alliaria petiolata is a Eurasian species that aggressively invades North American forest understories, in part due to the production of toxic phytochemicals. Here we document a marked decline in its phytotoxin production and a consequent decline in their impact on three native species, across a 50+ year chronosequence of Alliaria petiolata invasion. Genetic evidence suggests that these patterns result from natural selection for decreased phytotoxin production rather than founder effects during introduction and spread. These patterns are consistent with the finding of slowing A. petiolata population growth and rebounding native species abundance across a separate chronosequence in Illinois, U.S. These results suggest that this invader is developing evolutionary limits in its introduced range and highlight the importance of understanding the long-term processes that shape species invasions and their impacts.


The American Naturalist | 2008

Community Complexity Drives Patterns of Natural Selection on a Chemical Defense of Brassica nigra

Richard A. Lankau; Sharon Y. Strauss

Plants interact with many different species throughout their life cycle. Recent work has shown that the ecological effects of multispecies interactions are often not predictable from studies of the component pairwise interactions. Little is known about how multispecies interactions affect the evolution of ecologically important traits. We tested the direct and interactive effects of inter‐ and intraspecific competition, as well as of two abundant herbivore species (a generalist folivore and a specialist aphid), on the selective value of a defensive chemical compound in Brassica nigra. We found that investment in chemical defense was favored in interspecific competition but disfavored in intraspecific competition and that this pattern of selection was dependent on the presence of both herbivores, suggesting that selection will depend on the rarity or commonness of these species. These results show that the selective value of ecologically important traits depends on the complicated web of interactions present in diverse natural communities and that fluctuations in community composition may maintain genetic variation in such traits.


Evolutionary Applications | 2011

Incorporating evolutionary principles into environmental management and policy

Richard A. Lankau; Peter Søgaard Jørgensen; David J. Harris; Andrew Sih

As policymakers and managers work to mitigate the effects of rapid anthropogenic environmental changes, they need to consider organisms’ responses. In light of recent evidence that evolution can be quite rapid, this now includes evolutionary responses. Evolutionary principles have a long history in conservation biology, and the necessary next step for the field is to consider ways in which conservation policy makers and managers can proactively manipulate evolutionary processes to achieve their goals. In this review, we aim to illustrate the potential conservation benefits of an increased understanding of evolutionary history and prescriptive manipulation of three basic evolutionary factors: selection, variation, and gene flow. For each, we review and propose ways that policy makers and managers can use evolutionary thinking to preserve threatened species, combat pest species, or reduce undesirable evolutionary changes. Such evolution‐based management has potential to be a highly efficient and consistent way to create greater ecological resilience to widespread, rapid, and multifaceted environmental change.


New Phytologist | 2011

Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions

Richard A. Lankau

Invaders can gain ecological advantages because of their evolutionary novelty, but little is known about how these novel advantages will change over time as the invader and invaded community evolve in response to each other. Invasive plants often gain such an advantage through alteration of soil microbial communities. In soil communities sampled from sites along a gradient of invasion history with Alliaria petiolata, microbial richness tended to decline, but the communitys resistance to A. petiolatas effects generally increased with increasing history of invasion. However, sensitive microbial taxa appeared to recover in the two oldest sites, leading to an increase in richness, but consequent decrease in resistance. This may be because of evolutionary changes in the A. petiolata populations, which tend to reduce their investment to allelopathic compounds over time. These results show that, over time, microbial communities can develop resistance to an invasive plant but at the cost of lower richness. However, over longer time-scales evolution in the invasive species may allow for the recovery of soil microbial communities.


Biological Invasions | 2010

Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species

Richard A. Lankau

Allelopathy has been increasingly invoked as a mechanism facilitating exotic plant invasions. However, studies even on the same target species often yield varying results concerning the strength and importance of allelopathic inhibition, suggesting that the process may depend on the specific environmental context. Here I studied how the allelopathic inhibition of sycamore (Platanus occidentalis) seedlings by garlic mustard (Alliaria petiolata) depended on the presence of a soil microbial community. Using three analytical approaches to quantifying allelopathy, I consistently found allelopathic inhibition only in sterilized soils, suggesting that certain microbial taxa inhibit the process, possibly by degrading the allelochemicals. Determining the environmental contexts that reduce or eliminate allelopathic inhibition could lead to a greater understanding of the spatial variation in invasion success and potentially lead to new avenues for management.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Coevolution between invasive and native plants driven by chemical competition and soil biota

Richard A. Lankau

Although reciprocal evolutionary responses between interacting species are a driving force behind the diversity of life, pairwise coevolution between plant competitors has received less attention than other species interactions and has been considered relatively less important in explaining ecological patterns. However, the success of species transported across biogeographic boundaries suggests a stronger role for evolutionary relationships in shaping plant interactions. Alliaria petiolata is a Eurasian species that has invaded North American forest understories, where it competes with native understory species in part by producing compounds that directly and indirectly slow the growth of competing species. Here I show that populations of A. petiolata from areas with a greater density of interspecific competitors invest more in a toxic allelochemical under common conditions. Furthermore, populations of a native competitor from areas with highly toxic invaders are more tolerant to competition from the invader, suggesting coevolutionary dynamics between the species. Field reciprocal transplants confirmed that native populations more tolerant to the invader had higher fitness when the invader was common, but these traits came at a cost when the invader was rare. Exotic species are often detrimentally dominant in their new range due to their evolutionary novelty; however, the development of new coevolutionary relationships may act to integrate exotic species into native communities.


Oecologia | 2011

Intraspecific variation in allelochemistry determines an invasive species' impact on soil microbial communities.

Richard A. Lankau

Invasive species can benefit from altered species interactions in their new range, and by interfering with species interactions among native competitors. Since exotic invasions are generally studied at the species level, relatively little is known about intraspecific variation in the traits that determine an invader’s effect on native species. Alliaria petiolata is a widespread and aggressive invader of forest understories that succeeds in part by interfering with mutualistic interactions between native plants and soil fungi. Here, I show that the impact of A. petiolata on soil microbial communities varied among individuals due to variation in their allelochemical concentrations. The differential impacts translated into varied effects on native tree growth, partly because A. petiolata’s allelochemicals preferentially affected the most mutualistic fungal taxa. These results highlight the importance of considering the spatial and temporal variation in an invasive species’ impacts for understanding and managing the invasion process.


Ecology | 2008

A CHEMICAL TRAIT CREATES A GENETIC TRADE-OFF BETWEEN INTRA- AND INTERSPECIFIC COMPETITIVE ABILITY

Richard A. Lankau

The importance of non-resource-based mechanisms of competition between plant species has been increasingly recognized, but little is known about how genetic variation and evolutionary changes in the underlying competitive traits might affect species coexistence. I found that genetic variation in sinigrin concentration, a putative allelopathic agent in Brassica nigra, affected the fitness of three heterospecific neighbor species but did not affect neighboring B. nigra individuals. Investment in sinigrin led to a negative genetic correlation between intra- and interspecific competitive ability, which over many generations could provide a strong stabilizing force maintaining both species and genetic diversity in this system.


New Phytologist | 2011

Introduced Brassica nigra populations exhibit greater growth and herbivore resistance but less tolerance than native populations in the native range

Ayub M. O. Oduor; Richard A. Lankau; Sharon Y. Strauss; José M. Gómez

Rapid post-introduction evolution has been found in many invasive plant species, and includes changes in defence (resistance and tolerance) and competitive ability traits. Here, we explored the post-introduction evolution of a trade-off between resistance to and tolerance of herbivory, which has received little attention. In a common garden experiment in a native range, nine invasive and 16 native populations of Brassica nigra were compared for growth and defence traits. Invasive populations had higher resistance to, but lower tolerance of, herbivore damage than native populations. Invasive populations survived better and produced more seeds than native ones when released from herbivores; but fitness was equivalent between the regions under ambient herbivory. The invasive populations grew taller, and produced more biomass and lighter seeds than natives, irrespective of insecticide treatment. In addition to supporting the idea of post-introduction rapid evolution of plant traits, our results also contribute to an emerging pattern of both increasing resistance and growth in invasive populations, contrary to the predictions of earlier theories of resistance-growth trade-offs.

Collaboration


Dive into the Richard A. Lankau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam S. Davis

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Greg Spyreas

Illinois Natural History Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Sih

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge