Richard A. O’Connor
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard A. O’Connor.
Nature | 2014
Ping Shen; Toralf Roch; Vicky Lampropoulou; Richard A. O’Connor; Ulrik Stervbo; Ellen Hilgenberg; Stefanie Ries; Van Duc Dang; Yarúa Jaimes; Capucine Daridon; Rui Li; Luc Jouneau; Pierre Boudinot; Siska Wilantri; Imme Sakwa; Yusei Miyazaki; Melanie D. Leech; Rhoanne C. McPherson; Stefan Wirtz; Markus F. Neurath; Kai Hoehlig; Edgar Meinl; Joachim R. Grün; Katharina Horn; Anja A. Kühl; Thomas Dörner; Amit Bar-Or; Stefan H. E. Kaufmann; Stephen M. Anderton; Simon Fillatreau
B lymphocytes have critical roles as positive and negative regulators of immunity. Their inhibitory function has been associated primarily with interleukin 10 (IL-10) because B-cell-derived IL-10 can protect against autoimmune disease and increase susceptibility to pathogens. Here we identify IL-35-producing B cells as key players in the negative regulation of immunity. Mice in which only B cells did not express IL-35 lost their ability to recover from the T-cell-mediated demyelinating autoimmune disease experimental autoimmune encephalomyelitis (EAE). In contrast, these mice displayed a markedly improved resistance to infection with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by their superior containment of the bacterial growth and their prolonged survival after primary infection, and upon secondary challenge, compared to control mice. The increased immunity found in mice lacking IL-35 production by B cells was associated with a higher activation of macrophages and inflammatory T cells, as well as an increased function of B cells as antigen-presenting cells (APCs). During Salmonella infection, IL-35- and IL-10-producing B cells corresponded to two largely distinct sets of surface-IgM+CD138hiTACI+CXCR4+CD1dintTim1int plasma cells expressing the transcription factor Blimp1 (also known as Prdm1). During EAE, CD138+ plasma cells were also the main source of B-cell-derived IL-35 and IL-10. Collectively, our data show the importance of IL-35-producing B cells in regulation of immunity and highlight IL-35 production by B cells as a potential therapeutic target for autoimmune and infectious diseases. This study reveals the central role of activated B cells, particularly plasma cells, and their production of cytokines in the regulation of immune responses in health and disease.
Journal of Experimental Medicine | 2012
Tom A. Barr; Ping Shen; Sheila Brown; Vicky Lampropoulou; Toralf Roch; Sarah Lawrie; Boli Fan; Richard A. O’Connor; Stephen M. Anderton; Amit Bar-Or; Simon Fillatreau; David Gray
IL-6–producing B cells contribute to EAE pathology and possibly human MS, whereas ablation of B cell IL-6 is associated with a reduced Th17 response.
Journal of Immunology | 2013
Melanie D. Leech; Tom A. Barr; Darryl G. Turner; Sheila Brown; Richard A. O’Connor; David Gray; Richard Mellanby; Stephen M. Anderton
Mice lacking IL-6 are resistant to autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE), which is driven by CNS-reactive CD4+ T cells. There are multiple cellular sources of IL-6, but the critical source in EAE has been uncertain. Using cell-specific IL-6 deficiency in models of EAE induced by active immunization, passive transfer, T cell transfer, and dendritic cell transfer, we show that neither the pathogenic T cells nor CNS-resident cells are required to produce IL-6. Instead, the requirement for IL-6 was restricted to the early stages of T cell activation and was entirely controlled by dendritic cell–derived IL-6. This reflected the loss of IL-6R expression by T cells over time. These data explain why blockade of IL-6R only achieves protection against EAE if used at the time of T cell priming. The implications for therapeutic manipulation of IL-6 signaling in human T cell–driven autoimmune conditions are considered.
Frontiers in Immunology | 2015
Rhoanne C. McPherson; Darryl G. Turner; Iris Mair; Richard A. O’Connor; Stephen M. Anderton
Accumulation of T regulatory (Treg) cells within the central nervous system (CNS) during experimental autoimmune encephalomyelitis (EAE) is essential for the resolution of disease. CNS Treg cells have been shown to uniformly express the Th1-associated molecules, T-bet and CXCR3. Here, we report that the expression of T-bet is not required for the function of these Treg within the CNS. Using mice that lacked T-bet expression specifically within the Treg compartment, we demonstrate that there was no deficit in Treg recruitment into the CNS during EAE and no difference in the resolution of disease compared to control mice. T-bet deficiency did not impact on the in vitro suppressive capacity of Treg. Transfer of T-bet-deficient Treg was able to suppress clinical signs of either EAE or colitis. These observations demonstrate that, although Treg can acquire characteristics associated with pathogenic T effector cells, this process is not necessarily required for their suppressive capacity and the resolution of autoimmune inflammation.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Karen J. Mackenzie; D. Nowakowska; Melanie D. Leech; Amanda McFarlane; Claire Wilson; Paul M. Fitch; Richard A. O’Connor; Sarah E. M. Howie; Jürgen Schwarze; Stephen M. Anderton
Significance Peptide immunotherapy (PIT) of ongoing allergy must control “memory” T helper 2 (Th2) cells. Memory T cells can be subdivided into effector memory T cells (Tem), which seem to be involved in immediate immune responses, and central memory T cells (Tcm), which are thought to provide long-term memory. We show that PIT can control allergic lung disease more effectively when the disease is driven by Tem Th2 cells, rather than by Tcm Th2 cells. PIT-treated Tcm remained more responsive to allergen, with a greater capacity to produce inflammatory Th2 cytokines in the lung. These were suppressed in PIT-treated Tem. These differences are important for clinical translation of PIT, because Tcm may be particularly dominant in some seasonal allergic conditions, such as hay fever. Peptide immunotherapy (PIT) offers realistic prospects for the treatment of allergic diseases, including allergic asthma. Much is understood of the behavior of naive T cells in response to PIT. However, treatment of patients with ongoing allergic disease requires detailed understanding of the responses of allergen-experienced T cells. CD62L expression by allergen-experienced T cells corresponds to effector/effector memory (CD62Llo) and central memory (CD62Lhi) subsets, which vary with allergen exposure (e.g., during, or out with, pollen season). The efficacy of PIT on different T helper 2 (Th2) cell memory populations is unknown. We developed a murine model of PIT in allergic airway inflammation (AAI) driven by adoptively transferred, traceable ovalbumin-experienced Th2 cells. PIT effectively suppressed AAI driven by unfractionated Th2 cells. Selective transfer of CD62Lhi and CD62Llo Th2 cells revealed that these two populations behaved differently from one another and from previously characterized (early deletional) responses of naive CD4+ T cells to PIT. Most notably, allergen-reactive CD62Llo Th2 cells were long-lived within the lung after PIT, before allergen challenge, in contrast to CD62Lhi Th2 cells. Despite this, PIT was most potent against CD62Llo Th2 cells in protecting from AAI, impairing their ability to produce Th2 cytokines, whereas this capacity was heightened in PIT-treated CD62Lhi Th2 cells. We conclude that Th2 cells do not undergo an early deletional form of tolerance after PIT. Moreover, memory Th2 subsets respond differently to PIT. These findings have implications for the clinical translation of PIT in different allergic scenarios.
Journal of Neuroinflammation | 2012
Richard Mellanby; Helen Cambrook; Darryl G. Turner; Richard A. O’Connor; Melanie D. Leech; Florian C. Kurschus; Andrew S. MacDonald; Bernd Arnold; Stephen M. Anderton
BackgroundExperimental autoimmune encephalomyelitis (EAE) depends on the initial activation of CD4+ T cells responsive to myelin autoantigens. The key antigen presenting cell (APC) population that drives the activation of naïve T cells most efficiently is the dendritic cell (DC). As such, we should be able to trigger EAE by transfer of DC that can present the relevant autoantigen(s). Despite some sporadic reports, however, models of DC-driven EAE have not been widely adopted. We sought to test the feasibility of this approach and whether activation of the DC by toll-like receptor (TLR)-4 ligation was a sufficient stimulus to drive EAE.FindingsHost mice were seeded with myelin basic protein (MBP)-reactive CD4+ T cells and then were injected with DC that could present the relevant MBP peptide which had been exposed to lipopolysaccharide as a TLR-4 agonist. We found that this approach induced robust clinical signs of EAE.ConclusionsDC are sufficient as APC to effectively drive the differentiation of naïve myelin-responsive T cells into autoaggressive effector T cells. TLR-4-stimulation can activate the DC sufficiently to deliver the signals required to drive the pathogenic function of the T cell. These models will allow the dissection of the molecular requirements of the initial DC-T cell interaction in the lymphoid organs that ultimately leads to autoimmune pathology in the central nervous system.
PLOS ONE | 2012
Luke Devey; James A. Richards; Richard A. O’Connor; Gary Borthwick; Spike Clay; A. Forbes Howie; Stephen J. Wigmore; Stephen M. Anderton; Sarah E. M. Howie
Ischemic preconditioning (IPC) protects organs from ischemia reperfusion injury (IRI) through unknown mechanisms. Effector T cell populations have been implicated in the pathogenesis of IRI, and T regulatory cells (Treg) have become a putative therapeutic target, with suggested involvement in IPC. We explored the role of Treg in hepatic IRI and IPC in detail. IPC significantly reduced injury following ischemia reperfusion insults. Treg were mobilized rapidly to the circulation and liver after IRI, but IPC did not further increase Treg numbers, nor was it associated with modulation of circulating pro-inflammatory chemokine or cytokine profiles. We used two techniques to deplete Treg from mice prior to IRI. Neither Treg depleted FoxP3.LuciDTR mice, nor wildtyoe mice depleted of Tregs with PC61, were more susceptible to IRI compared with controls. Despite successful enrichment of Treg in the liver, by adoptive transfer of both iTreg and nTreg or by in vivo expansion of Treg with IL-2/anti-IL-2 complexes, no protection against IRI was observed.We have explored the role of Treg in IRI and IPC using a variety of techniques to deplete and enrich them within both the liver and systemically. This work represents an important negative finding that Treg are not implicated in IPC and are unlikely to have translational potential in hepatic IRI.
Frontiers in Immunology | 2015
Dario Besusso; Louise Saul; Melanie D. Leech; Richard A. O’Connor; Andrew S. MacDonald; Stephen M. Anderton; Richard Mellanby
Dendritic cells (DC) play a crucial role in regulating T cell activation. Due to their capacity to shape the immune response, tolerogenic DC have been used to treat autoimmune diseases. In this study, we examined whether 1,25 dihydroxyvitamin D3-conditioned bone marrow-derived DC (VitD-BMDC) were able to limit the development of autoimmune pathology in experimental autoimmune encephalomyelitis (EAE). We found that VitD-BMDC had lower expression of MHC class II and co-stimulatory molecules and were less effective at priming autoreactive T cells in vitro. Using our recently described BMDC-driven model of EAE, we demonstrated that VitD-BMDC had a significantly reduced ability to initiate EAE. We found that the impaired ability of VitD-BMDC to initiate EAE was not due to T cell tolerization. Instead, we discovered that the addition of 1,25(OH)2D3 to BMDC cultures resulted in a significant reduction in the proportion of CD11c+ cells. Purified CD11c+ VitD-BMDC were significantly less effective at priming T cells in vitro yet were similarly capable of initiating EAE as vehicle-treated CD11c+ BMDC. This study demonstrates that in vitro assays of DC function can be a poor predictor of in vivo behavior and that CD11c+ VitD-BMDC are highly effective initiators of an autopathogenic T cell response.
Methods of Molecular Biology | 2014
Rhoanne C. McPherson; Helen E. Cambrook; Richard A. O’Connor; Stephen M. Anderton
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system (CNS) often used as a model for the early inflammatory stages of multiple sclerosis and also as a model of organ-specific autoimmune disease.This protocol describes the induction of passive EAE in mice, either using T cells isolated from mice primed with myelin antigens, or through the use of naïve TCR transgenic T cells activated in vitro in the presence of myelin-derived antigens.
Methods of Molecular Biology | 2015
Darryl G. Turner; Melanie D. Leech; Richard A. O’Connor; Stephen M. Anderton
Experimental autoimmune encephalomyelitis (EAE) is an animal model commonly used to investigate the inflammatory response in organ-specific autoimmunity and a model of the early immune responses of multiple sclerosis.This protocol outlines the methods used for the processing of peripheral immune tissues, the spleen and draining lymph nodes, as well as the site of inflammation, the central nervous system (CNS), for analyzing immune cell phenotype and function during murine EAE.