Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Van Etten is active.

Publication


Featured researches published by Richard A. Van Etten.


Nature Genetics | 2000

Reversibility of acute B-cell leukaemia induced by BCR-ABL1

Claudia S. Huettner; Pu Zhang; Richard A. Van Etten; Daniel G. Tenen

Cancer is thought to arise from multiple genetic events that establish irreversible malignancy. A different mechanism might be present in certain leukaemias initiated by a chromosomal translocation. We have taken a new approach to determine if ablation of the genetic abnormality is sufficient for reversion by generating a conditional transgenic model of BCR–ABL1 (also known as BCR–ABL)-induced leukaemia. This oncogene is the result of a reciprocal translocation and is associated with different forms of leukaemia. The most common form, p210 BCR–ABL1, is found in more than 90% of patients with chronic myelogenous leukaemia (CML) and in up to 15% of adult patients with de novoacute lymphoblastic leukaemia (ALL). Efforts to establish a useful transgenic model have been hampered by embryonic lethality when the oncogene is expressed during embryogenesis, by reduced penetrance or by extremely long latency periods. One model uses the ‘knock-in’ approach to induce leukaemia by p190 BCR–ABL1(ref. 10). Given the limitations of models with p210, we used a different experimental approach. Lethal leukaemia developed within an acceptable time frame in all animals, and complete remission was achieved by suppression of BCR–ABL1expression, even after multiple rounds of induction and reversion. Our results demonstrate that BCR–ABL1is required for both induction and maintenance of leukaemia.


Cancer Cell | 2002

Critical role for Gab2 in transformation by BCR/ABL

Martin Sattler; M. Golam Mohi; Yuri B. Pride; Laura R Quinnan; Nicole A Malouf; Klaus Podar; Franck Gesbert; Hiromi Iwasaki; Shaoguang Li; Richard A. Van Etten; Haihua Gu; James D. Griffin; Benjamin G. Neel

The BCR/ABL oncogene causes chronic myelogenous leukemia (CML) in humans and a CML-like disease, as well as lymphoid leukemia, in mice. p210 BCR/ABL is an activated tyrosine kinase that phosphorylates itself and several cellular signaling proteins. The autophosphorylation site tyrosine 177 binds the adaptor Grb2 and helps determine the lineage and severity of BCR/ABL disease: Tyr177 mutation (BCR/ABL-Y177F) dramatically impairs myeloid leukemogenesis, while diminishing lymphoid leukemogenesis. The critical signal(s) from Tyr177 has remained unclear. We report that Tyr177 recruits the scaffolding adaptor Gab2 via a Grb2/Gab2 complex. Compared to BCR/ABL-expressing Ba/F3 cells, BCR/ABL-Y177F cells exhibit markedly reduced Gab2 tyrosine phosphorylation and association of phosphatidylinositol-3 kinase (PI3K) and Shp2 with Gab2 and BCR/ABL, and decreased PI3K/Akt and Ras/Erk activation, cell proliferation, and spontaneous migration. Remarkably, bone marrow myeloid progenitors from Gab2 (-/-) mice are resistant to transformation by BCR/ABL, whereas lymphoid transformation is diminished as a consequence of markedly increased apoptosis. BCR/ABL-evoked PI3K/Akt and Ras/Erk activation also are impaired in Gab2 (-/-) primary myeloid and lymphoid cells. Our results identify Gab2 and its associated proteins as key determinants of the lineage and severity of BCR/ABL transformation.


Neuron | 2000

Cables Links Cdk5 and c-Abl and Facilitates Cdk5 Tyrosine Phosphorylation, Kinase Upregulation, and Neurite Outgrowth

Lawrence R. Zukerberg; Gentry N. Patrick; Margareta Nikolic; Sandrine Humbert; Chin-Lee Wu; Lorene M. Lanier; Frank B. Gertler; Marc Vidal; Richard A. Van Etten; Li-Huei Tsai

Cyclin-dependent kinase 5 (Cdk5) is a small serine/threonine kinase that plays a pivotal role during development of the CNS. Cables, a novel protein, interacts with Cdk5 in brain lysates. Cables also binds to and is a substrate of the c-Abl tyrosine kinase. Active c-Abl kinase leads to Cdk5 tyrosine phosphorylation, and this phosphorylation is enhanced by Cables. Phosphorylation of Cdk5 by c-Abl occurs on tyrosine 15 (Y15), which is stimulatory for p35/Cdk5 kinase activity. Expression of antisense Cables in primary cortical neurons inhibited neurite outgrowth. Furthermore, expression of active Abl resulted in lengthening of neurites. The data provide evidence for a Cables-mediated interplay between the Cdk5 and c-Abl signaling pathways in the developing nervous system.


Trends in Cell Biology | 1999

Cycling, stressed-out and nervous: cellular functions of c-Abl.

Richard A. Van Etten

c-Abl, the product of the cellular homologue of the transforming gene of Abelson murine leukaemia virus, has been a protein in search of a purpose for over two decades. Because c-Abl is implicated in the pathogenesis of several human leukaemias, understanding the functions of Abl is an important goal. Recently, biochemical and genetic approaches have converged to shed new light on the mechanism of regulation of c-Abl kinase activity and the multiple roles of c-Abl in cellular physiology. This review summarizes our current understanding of the many facets of c-Abl biology, emphasizing recent studies on Drosophila and mammalian Abl.


Journal of Biological Chemistry | 2000

c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines.

Bradley B. Brasher; Richard A. Van Etten

Using the specific Abl tyrosine kinase inhibitor STI 571, we purified unphosphorylated murine type IV c-Abl and measured the kinetic parameters of c-Abl tyrosine kinase activity in a solution with a peptide-based assay. Unphosphorylated c-Abl exhibited substantial peptide kinase activity with K m of 204 μm and V max of 33 pmol min−1. Contrary to previous observations using immune complex kinase assays, we found that a transforming c-Abl mutant with a Src homology 3 domain point mutation (P131L) had significantly (about 6-fold) higher intrinsic kinase activity than wild-type c-Abl (K m = 91 μm,V max = 112 pmol min−1). Autophosphorylation stimulated the activity of wild-type c-Abl about 18-fold and c-Abl P131L about 3.6-fold, resulting in highly active kinases with similar catalytic rates. The autophosphorylation rate was dependent on Abl protein concentration consistent with an intermolecular reaction. A tyrosine to phenylalanine mutation (Y412F) at the c-Abl residue homologous to the c-Src catalytic domain autophosphorylation site impaired the activation of wild-type c-Abl by 90% but reduced activation of c-Abl P131L by only 45%. Mutation of a tyrosine (Tyr-245) in the linker region between the Src homology 2 and catalytic domains that is conserved among the Abl family inhibited the autophosphorylation-induced activation of wild-type c-Abl by 50%, whereas the c-Abl Y245F/Y412F double mutant was minimally activated by autophosphorylation. These results support a model where c-Abl is inhibited in part through an intramolecular Src homology 3-linker interaction and stimulated to full catalytic activity by sequential phosphorylation at Tyr-412 and Tyr-245.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9

Ajeeta B. Dash; Ifor R. Williams; Jeffery L. Kutok; Michael H. Tomasson; Ema Anastasiadou; Kathleen Lindahl; Shaoguang Li; Richard A. Van Etten; Julian Borrow; David E. Housman; Brian J. Druker; D. Gary Gilliland

Constitutive activation of tyrosine kinases, such as the BCR/ABL fusion associated with t(9;22)(q34;q22), is a hallmark of chronic myeloid leukemia (CML) syndromes in humans. Expression of BCR/ABL is both necessary and sufficient to cause a chronic myeloproliferative syndrome in murine bone marrow transplantation models, and absolutely depends on kinase activity. Progression of CML to acute leukemia (blast crisis) in humans has been associated with acquisition of secondary chromosomal translocations, including the t(7;11)(p15;p15) resulting in the NUP98/HOXA9 fusion protein. We demonstrate that BCR/ABL cooperates with NUP98/HOXA9 to cause blast crisis in a murine model. The phenotype depends both on expression of BCR/ABL and NUP98/HOXA9, but tumors retain sensitivity to the ABL inhibitor STI571 in vitro and in vivo. This paradigm is applicable to other constitutively activated tyrosine kinases such as TEL/PDGFβR. These experiments document cooperative effects between constitutively activated tyrosine kinases, which confer proliferative and survival properties to hematopoietic cells, with mutations that impair differentiation, such as the NUP98/HOXA9, giving rise to the acute myeloid leukemia (AML) phenotype. Furthermore, these data indicate that despite acquisition of additional mutations, CML blast crisis cells retain their dependence on BCR/ABL for proliferation and survival.


The EMBO Journal | 2002

Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation

Zehavit Goldberg; Ronit Vogt Sionov; Michael Berger; Yaara Zwang; Ruth Perets; Richard A. Van Etten; Moshe Oren; Yoichi Taya; Ygal Haupt

The p53 tumor suppressor is inhibited and destabilized by Mdm2. However, under stress conditions, this downregulation is relieved, allowing the accumulation of biologically active p53. Recently we showed that c‐Abl is important for p53 activation under stress conditions. In response to DNA damage, c‐Abl protects p53 by neutralizing the inhibitory effects of Mdm2. In this study we ask whether this neutralization involves a direct interplay between c‐Abl and Mdm2, and what is the contribution of the c‐Abl kinase activity? We demonstrate that the kinase activity of c‐Abl is required for maintaining the basal levels of p53 expression and for achieving maximal accumulation of p53 in response to DNA damage. Importantly, c‐Abl binds and phosphorylates Mdm2 in vivo and in vitro. We characterize Hdm2 (human Mdm2) phosphorylation at Tyr394. Substitution of Tyr394 by Phe394 enhances the ability of Mdm2 to promote p53 degradation and to inhibit its transcriptional and apoptotic activities. Our results suggest that phosphorylation of Mdm2 by c‐Abl impairs the inhibition of p53 by Mdm2, hence defining a novel mechanism by which c‐Abl activates p53.


Molecular Cell | 2003

Autoinhibition of Bcr-Abl through Its SH3 Domain

Kristen M. Smith; Rinat Yacobi; Richard A. Van Etten

Abstract Bcr-Abl is a dysregulated tyrosine kinase whose mechanism of activation is unclear. Here, we demonstrate that, like c-Abl, Bcr-Abl is negatively regulated through its SH3 domain. Kinase activity, transformation, and leukemogenesis by Bcr-Abl are greatly impaired by mutations of the Bcr coiled-coil domain that disrupt oligomerization, but restored by an SH3 point mutation that blocks ligand binding or a complementary mutation at the intramolecular SH3 binding site defined in c-Abl. Phosphorylation of tyrosines in the activation loop of the catalytic domain and the linker between the SH2 and catalytic domains (SH2-CD linker) is dependent on oligomerization and required for leukemogenesis. These results suggest that Bcr-Abl has a monomeric, unphosphorylated state with the SH3 domain engaged intramolecularly to Pro1124 in the SH2-CD linker, the form that is sensitive to the inhibitor imatinib (STI-571). The sole function of the coiled-coil domain is to disrupt the autoinhibited conformation through oligomerization and intermolecular autophosphorylation.


Molecular and Cellular Biology | 1999

A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation.

Li-Qin Liu; Robert L. Ilaria; Paul D. Kingsley; Atsushi Iwama; Richard A. Van Etten; James Palis; Dong-Er Zhang

ABSTRACT Using PCR-coupled subtractive screening-representational difference analysis, we have cloned a novel gene from AML1-ETO knockin mice. This gene is highly expressed in the yolk sac and fetal liver of the knockin mice. Nucleotide sequence analysis indicates that its cDNA contains an 1,107-bp open reading frame encoding a 368-amino-acid polypeptide. Further protein sequence and protein translation analysis shows that it belongs to a family of ubiquitin-specific proteases (UBP), and its molecular mass is 43 kDa. Therefore, we have named this gene UBP43. Like other ubiquitin proteases, the UBP43 protein has deubiquitinating enzyme activity. Protein ubiquitination has been implicated in many important cellular events. In wild-type adult mice, UBP43 is highly expressed in the thymus and in peritoneal macrophages. Among nine different murine hematopoietic cell lines analyzed, UBP43 expression is detectable only in cell lines related to the monocytic lineage. Furthermore, its expression is regulated during cytokine-induced monocytic cell differentiation. We have investigated its function in the hematopoietic myeloid cell line M1. UBP43 was introduced into M1 cells by retroviral gene transfer, and several high-expressing UBP43 clones were obtained for further study. Morphologic and cell surface marker examination of UBP43/M1 cells reveals that overexpression of UBP43 blocks cytokine-induced terminal differentiation of monocytic cells. These data suggest that UBP43 plays an important role in hematopoiesis by modulating either the ubiquitin-dependent proteolytic pathway or the ubiquitination state of another regulatory factor(s) during myeloid cell differentiation.


Journal of Clinical Investigation | 2000

Fatal myeloproliferation, induced in mice by TEL/PDGFbetaR expression, depends on PDGFbetaR tyrosines 579/581.

Michael H. Tomasson; David W. Sternberg; Ifor R. Williams; Martin Carroll; Danielle Cain; Robert L. Ilaria; Richard A. Van Etten; D. Gary Gilliland

The t(5;12)(q33;p13) translocation associated with chronic myelomonocytic leukemia (CMML) generates a TEL/PDGFbetaR fusion gene. Here, we used a murine bone marrow transplant (BMT) assay to test the transforming properties of TEL/PDGFbetaR in vivo. TEL/PDGFbetaR, introduced into whole bone marrow by retroviral transduction, caused a rapidly fatal myeloproliferative disease that closely recapitulated human CMML. TEL/PDGFbetaR transplanted mice developed leukocytosis with Gr-1(+) granulocytes, splenomegaly, evidence of extramedullary hematopoiesis, and bone marrow fibrosis, but no lymphoproliferative disease. We assayed mutant forms of the TEL/PDGFbetaR fusion protein - including 8 tyrosine to phenylalanine substitutions at phosphorylated PDGFbetaR sites to which various SH2 domain-containing signaling intermediates bind - for ability to transform hematopoietic cells. All of the phenylalanine (F-) mutants tested conferred IL-3-independence to a cultured murine hematopoietic cell line, but, in the BMT assay, different F-mutants displayed distinct transforming properties. In transplanted animals, tyrosines 579/581 proved critical for the development of myeloproliferative phenotype. F-mutants with these residues mutated showed no sign of myeloproliferation but instead developed T-cell lymphomas. In summary, TEL/PDGFbetaR is necessary and sufficient to induce a myeloproliferative disease in a murine BMT model, and PDGFbetaR residues Y579/581 are required for this phenotype.

Collaboration


Dive into the Richard A. Van Etten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael H. Tomasson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle Cain

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge