Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard A. Walsh is active.

Publication


Featured researches published by Richard A. Walsh.


Circulation | 1999

Increased Protein Kinase C Activity and Expression of Ca2+-Sensitive Isoforms in the Failing Human Heart

Nancy Bowling; Richard A. Walsh; Guojie Song; Thomas B. Estridge; George E. Sandusky; Rebecca L. Fouts; Karen Mintze; Todd Pickard; Robert L. Roden; Michael R. Bristow; Hani N. Sabbah; Jacques Mizrahi; Gianni Gromo; George L. King; Chris J. Vlahos

BACKGROUND Increased expression of Ca2+-sensitive protein kinase C (PKC) isoforms may be important markers of heart failure. Our aim was to determine the relative expression of PKC-beta1, -beta2, and -alpha in failed and nonfailed myocardium. METHODS AND RESULTS Explanted hearts of patients in whom dilated cardiomyopathy or ischemic cardiomyopathy was diagnosed were examined for PKC isoform content by Western blot, immunohistochemistry, enzymatic activity, and in situ hybridization and compared with nonfailed left ventricle. Quantitative immunoblotting revealed significant increases of >40% in PKC-beta1 (P<0.05) and -beta2 (P<0.04) membrane expression in failed hearts compared with nonfailed; PKC-alpha expression was significantly elevated by 70% in membrane fractions (P<0.03). PKC-epsilon expression was not significantly changed. In failed left ventricle, PKC-beta1 and -beta2 immunostaining was intense throughout myocytes, compared with slight, scattered staining in nonfailed myocytes. PKC-alpha immunostaining was also more evident in cardiomyocytes from failed hearts with staining primarily localized to intercalated disks. In situ hybridization revealed increased PKC-beta1 and -beta2 mRNA expression in cardiomyocytes of failed heart tissue. PKC activity was significantly increased in membrane fractions from failed hearts compared with nonfailed (1021+/-189 versus 261+/-89 pmol. mg-1. min-1, P<0.01). LY333531, a selective PKC-beta inhibitor, significantly decreased PKC activity in membrane fractions from failed hearts by 209 pmol. min-1. mg-1 (versus 42.5 pmol. min-1. mg-1 in nonfailed, P<0.04), indicating a greater contribution of PKC-beta to total PKC activity in failed hearts. CONCLUSIONS In failed human heart, PKC-beta1 and -beta2 expression and contribution to total PKC activity are significantly increased. This may signal a role for Ca2+-sensitive PKC isoforms in cardiac mechanisms involved in heart failure.


Annals of Emergency Medicine | 1995

A Rapid Diagnostic and Treatment Center for Patients With Chest Pain in the Emergency Department

W. Brian Gibler; John Paul Runyon; Richard Levy; Michael R. Sayre; Raymond Kacich; Charles R. Hattemer; Cathy Hamilton; Julie W Gerlach; Richard A. Walsh

STUDY OBJECTIVE To evaluate a comprehensive diagnostic 9-hour evaluation (Heart ER Program) for patients with possible acute ischemic coronary syndromes. DESIGN Retrospective review of consecutive patients. SETTING Urban tertiary care emergency department. PARTICIPANTS A total of 1,010 patients with symptoms suggestive of acute ischemic coronary syndrome was enrolled in the Heart ER Program over the first 32 months of operation. Patients with history of coronary artery disease, hemodynamic instability, acute ST-segment elevation or depression of more than 1 mm, or a clinical syndrome consistent with unstable angina were directly admitted to the hospital. INTERVENTION Patients underwent serial testing for creatine kinase (CK-MB) on presentation to the Heart ER and 3, 6, and 9 hours later with continuous 12-lead ECGs/serial ST-segment trend monitoring for 9 hours. Two-dimensional echocardiography and graded exercise testing were performed in the ED after the 9-hour evaluation period. RESULTS Of 1,010 patients, 829 (82.1%) were released home from the ED; 153 (15.1%) required admission for further cardiac evaluation. Fifty-two of 153 (33.9%) admitted patients were found to have a cardiac cause for their symptoms; 43 had acute ischemic coronary syndromes (12, acute myocardial infarction; 31, angina or unstable angina). CONCLUSION The Heart ER program provides an effective method for evaluating low- to moderate-risk patients with possible acute ischemic coronary syndrome in the ED setting.


Journal of Clinical Investigation | 1998

The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure.

Stephen B. Liggett; Lynne E. Wagoner; Laura L. Craft; Richard Hornung; Brian D. Hoit; Tina C. McIntosh; Richard A. Walsh

The beta2-adrenergic receptor (beta2AR), an important modulator of cardiac inotropy and chronotropy, has significant genetic heterogeneity in the population. Because dysfunctional betaARs play a role in the pathogenesis of the failing ventricle, we tested the hypothesis that beta2AR polymorphisms alter the outcome of congestive heart failure. 259 patients with NYHA functional class II-IV heart failure due to ischemic or dilated cardiomyopathy were genotyped and prospectively followed, with the endpoint defined as death or cardiac transplantation. The allele frequencies between this group and those of 212 healthy controls also were compared and did not differ between the groups. However, those with the Ile164 polymorphism displayed a striking difference in survival with a relative risk of death or cardiac transplant of 4.81 (P < 0.001) compared with those with the wild-type Thr at this position. Age, race, gender, functional class, etiology, ejection fraction, and medication use did not differ between these individuals and those with the wild-type beta2AR, and thus the beta2AR genotype at position 164 was the only clear distinguishing feature between the two groups. The 1-yr survival for Ile164 patients was 42% compared with 76% for patients harboring wild-type beta2AR. In contrast, polymorphisms at amino acid positions 16 (Arg or Gly) or 27 (Gln or Glu), which also alter receptor phenotype, did not appear to have an influence on the course of heart failure. Taken together with cell-based and transgenic mouse results, this study establishes a paradigm whereby genetic variants of key signaling elements can have pathophysiologic consequences within the context of a disease. Furthermore, patients with the Ile164 polymorphism and heart failure may be candidates for earlier aggressive intervention or cardiac transplantation.


Molecular Cell | 1999

Identification of a Specific Role for the Na,K-ATPase α2 Isoform as a Regulator of Calcium in the Heart

Paul F. James; Ingrid L. Grupp; Gunter Grupp; Alison L. Woo; G.Roger Askew; Michelle L. Croyle; Richard A. Walsh; Jerry B. Lingrel

It is well accepted that inhibition of the Na,K-ATPase in the heart, through effects on the Na/Ca exchanger, raises the intracellular Ca2+ concentration and strengthens cardiac contraction. However, the contribution that individual isoforms make to this calcium regulatory role is unknown. Assessing the phenotypes of mouse hearts with genetically reduced levels of Na,K-ATPase alpha 1 or alpha 2 isoforms clearly demonstrates different functional roles for these isoforms in vivo. Heterozygous alpha 2 hearts are hypercontractile as a result of increased calcium transients during the contractile cycle. In contrast, heterozygous alpha 1 hearts are hypocontractile. The different functional roles of these two isoforms are further demonstrated since inhibition of the alpha 2 isoform with ouabain increases the contractility of heterozygous alpha 1 hearts. These results definitively illustrate a specific role for the alpha 2 Na,K-ATPase isoform in Ca2+ signaling during cardiac contraction.


Journal of Clinical Investigation | 1996

Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice.

Vivek J. Kadambi; Sathivel Ponniah; Judy M. Harrer; Brian D. Hoit; G W Dorn nd; Richard A. Walsh; Evangelia G. Kranias

Phospholamban is the regulator of the cardiac sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity and an important modulator of basal contractility in the heart. To determine whether all the SR Ca(2+)-ATPase enzymes are subject to regulation by phospholamban in vivo, transgenic mice were generated which overexpressed phospholamban in the heart, driven by the cardiac-specific alpha-myosin heavy chain promoter. Quantitative immunoblotting revealed a twofold increase in the phospholamban protein levels in transgenic hearts compared to wild type littermate hearts. The transgenic mice showed no phenotypic alterations and no changes in heart/body weight, heart/lung weight, and cardiomyocyte size. Isolated unloaded cardiac myocytes from transgenic mice exhibited diminished shortening fraction (63%) and decreased rates of shortening (64%) and relengthening (55%) compared to wild type (100%) cardiomyocytes. The decreases in contractile parameters of transgenic cardiomyocytes reflected decreases in the amplitude (83%) of the Ca2+ signal and prolongation (131%) in the time for decay of the Ca2+ signal, which was associated with a decrease in the apparent affinity of the SR Ca(2+)-ATPase for Ca2+ (56%), compared to wild type (100%) cardiomyocytes. In vivo analysis of left ventricular systolic function using M mode and pulsed-wave Doppler echocardiography revealed decreases in fractional shortening (79%) and the normalized mean velocity of circumferential shortening (67%) in transgenic mice compared to wild type (100%) mice. The differences in contractile parameters and Ca2+ kinetics in transgenic cardiomyocytes and the depressed left ventricular systolic function in transgenic mice were abolished upon isoproterenol stimulation. These findings indicate that a fraction of the Ca(2+)-ATPases in native SR is not under regulation by phospholamban. Expression of additional phospholamban molecules results in: (a) inhibition of SR Ca2+ transport; (b) decreases in systolic Ca2+ levels and contractile parameters in ventricular myocytes; and (c) depression of basal left ventricular systolic function in vivo.


Circulation Research | 1995

In Vivo Echocardiographic Detection of Enhanced Left Ventricular Function in Gene-Targeted Mice With Phospholamban Deficiency

Brian D. Hoit; Saeb F. Khoury; Evangelia G. Kranias; Nancy Ball; Richard A. Walsh

We evaluated the ability of M-mode and Doppler echocardiography to assess left ventricular (LV) function reliably and repeatedly in mice and tested whether these techniques could detect physiological alterations in phospholamban (PLB)-deficient mice. Anesthetized wild-type mice (n = 7) and mice deficient in PLB (n = 8) were studied with two-dimensional guided M-mode and Doppler echocardiography using a 9-MHz imaging and 5- to 7.5-MHz Doppler transducer. Data were acquired in the baseline state and after intraperitoneal isoproterenol administration (2.0 micrograms/g IP). Interobserver and intraobserver variability and reproducibility were excellent. PLB-deficient mice were associated with significant (P < .05) increases in several physiological parameters (mean +/- SD) compared with wild-type control mice: normalized mean velocity of circumferential shortening (7.7 +/- 2.1 versus 5.5 +/- 1.0 circ/sec), peak aortic velocity (105 +/- 13 versus 75 +/- 9.2 cm/s), mean aortic acceleration (57 +/- 16 versus 31 +/- 4 m/s2), and peak early-diastolic transmitral velocity (80.0 +/- 7.2 versus 66.9 +/- 7.7 cm/s). LV dimensions, shortening fractions, heart rates, late diastolic transmitral (A) velocities, and early to late (E/A) diastolic velocity ratios were similar in both groups. Isoproterenol administration resulted in significant increases in Doppler indices of ventricular function in control but not PLB-deficient mice. These findings indicate that assessment of LV function can be performed noninvasively in mice under varying physiological conditions and that PLB regulates basal LV function in vivo.


Circulation Research | 2000

Transgenic Overexpression of Constitutively Active Protein Kinase C ε Causes Concentric Cardiac Hypertrophy

Yasuchika Takeishi; Peipei Ping; Roberto Bolli; Darryl L. Kirkpatrick; Brian D. Hoit; Richard A. Walsh

Abstract—To test the hypothesis that activation of the protein kinase C (PKC) e isoform leads to cardiac hypertrophy without failure, we studied transgenic mice with cardiac-specific overexpression...


Circulation Research | 1998

Targeted Overexpression of the Sarcoplasmic Reticulum Ca2+-ATPase Increases Cardiac Contractility in Transgenic Mouse Hearts

Debra L. Baker; Katsuji Hashimoto; Ingrid L. Grupp; Yong Ji; Thomas D. Reed; Evgenij Loukianov; Gunter Grupp; Ajit Bhagwhat; Brian D. Hoit; Richard A. Walsh; Eduardo Marban; Muthu Periasamy

Cardiac hypertrophy and heart failure are known to be associated with a reduction in Ca2+-ATPase pump levels of the sarcoplasmic reticulum (SR). To determine whether, and to what extent, alterations in Ca2+ pump numbers can affect contraction and relaxation parameters of the heart, we have overexpressed the cardiac SR Ca2+-ATPase specifically in the mouse heart using the alpha-myosin heavy chain promoter. Analysis of 2 independent transgenic lines demonstrated that sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA2a) mRNA levels were increased 3.88+/-0. 4-fold and 7.90+/-0.2-fold over those of the control mice. SERCA2a protein levels were increased by 1.31+/-0.05-fold and 1.54+/-0. 05-fold in these lines despite high levels of mRNA, suggesting that complex regulatory mechanisms may determine the SERCA2a pump levels. The maximum velocity of Ca2+ uptake (Vmax) was increased by 37%, demonstrating that increased pump levels result in increased SR Ca2+ uptake function. However, the apparent affinity of the SR Ca2+-ATPase for Ca2+ remains unchanged in transgenic hearts. To evaluate the effects of overexpression of the SR Ca2+ pump on cardiac contractility, we used the isolated perfused work-performing heart model. The transgenic hearts showed significantly higher myocardial contractile function, as indicated by increased maximal rates of pressure development for contraction (+dP/dt) and relaxation (-dP/dt), together with shortening of the normalized time to peak pressure and time to half relaxation. Measurements of intracellular free calcium concentration and contractile force in trabeculae revealed a doubling of Ca2+ transient amplitude, with a concomitant boost in contractility. The present study demonstrates that increases in SERCA2a pump levels can directly enhance contractile function of the heart by increasing SR Ca2+ transport.


Circulation | 1998

Decompensation of Pressure-Overload Hypertrophy in Gαq-Overexpressing Mice

Yoshihito Sakata; Brian D. Hoit; Stephen B. Liggett; Richard A. Walsh; Gerald W. Dorn

Background—Receptor-mediated activation of myocardial Gq signaling is postulated as a biochemical mechanism transducing pressure-overload hypertrophy. The specific effects of Gq activation on the functional and morphological adaptations to pressure overload are not known. Methods and Results—To determine the effects of intrinsic myocyte Gαq signaling on the left ventricular hypertrophic response to experimental pressure overload, transgenic mice overexpressing Gαq specifically in the heart (Gαq-25) and nontransgenic siblings underwent microsurgical creation of transverse aortic coarctation and the morphometric, functional, and molecular characteristics of these pressure-overloaded hearts were compared at increasing times after surgery. Before aortic banding, isolated Gαq-25 ventricular myocytes exhibited contractile depression (depressed +dl/dt and −dl/dt) and Gαq-25 hearts showed a pattern of fetal gene expression similar to the known characteristics of nontransgenic pressure-overloaded mice. Three weeks...


Circulation Research | 1995

Differential Changes in Cardiac Phospholamban and Sarcoplasmic Reticular Ca2+-ATPase Protein Levels Effects on Ca2+ Transport and Mechanics in Compensated Pressure-Overload Hypertrophy and Congestive Heart Failure

Eva Kiss; Nancy Ball; Evangelia G. Kranias; Richard A. Walsh

The objective of this study was to elucidate the role of the sarcoplasmic reticulum (SR) in the transition from compensated pressure-overload hypertrophy (increased left ventricular [LV] mass, normal LV function, and no pulmonary congestion) to congestive heart failure (increased LV mass, depressed LV function, and pulmonary congestion). To address this issue, the descending thoracic aorta was banded for 4 and 8 weeks in adult guinea pigs, and the changes in isovolumic LV mechanics, SR Ca2+ transport, and SR protein levels were determined and compared with age-matched sham-operated control animals. A subgroup of the 8-week banded animals manifested the congestive heart failure phenotype with diminished developed LV pressure normalized by LV mass, reduced rates of LV pressure development and relaxation, and markedly increased lung weight-to-body weight ratios. The cardiac mechanical and morphometric changes were associated with depressed protein levels of the SR Ca(2+)-ATPase (85% of the control) and phospholamban (65% of the control) assessed by quantitative immunoblotting. Resultant rates of SR Ca2+ uptake (Vmax) and the affinity of SR Ca(2+)-ATPase for Ca2+ (EC50) were significantly depressed [32 +/- 6 nmol Ca2+.min-1.mg-1 and 0.59 +/- 0.12 (mumol/L)/L, respectively] compared with the 8-week sham-operated control animals [40 +/- 1 nmol Ca2+.min-1.mg-1 and 0.40 +/- 0.05 (mumol/L)/L, respectively]. We conclude that this model of pressure overload-induced cardiac failure is associated with (1) diminished LV force development, rates of pressure development, and decay; (2) depressed protein expression of the Ca(2+)-cycling proteins SR Ca(2+)-ATPase and phospholamban; and (3) decreased Vmax and affinity of the SR Ca(2+)-ATPase for Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)

Collaboration


Dive into the Richard A. Walsh's collaboration.

Top Co-Authors

Avatar

Brian D. Hoit

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Marjorie Gabel

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Robert A. O'Rourke

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yanfu Shao

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Evangelia G. Kranias

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald W. Dorn

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nancy Ball

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Yasuchika Takeishi

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge