Richard Adolph Snavely
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Adolph Snavely.
Physics of Plasmas | 2000
S. C. Wilks; A. B. Langdon; Thomas E. Cowan; Markus Roth; M. Singh; S. P. Hatchett; M.H. Key; Deanna M. Pennington; Andrew J. Mackinnon; Richard Adolph Snavely
An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 1020 W/cm2, high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors.
Physics of Plasmas | 2000
Stephen P. Hatchett; Curtis G. Brown; Thomas E. Cowan; E. A. Henry; Joy S. Johnson; Michael H. Key; J. A. Koch; A. Bruce Langdon; Barbara F. Lasinski; R.W. Lee; Andrew J. Mackinnon; Deanna M. Pennington; Michael D. Perry; Thomas W. Phillips; Markus Roth; T. Craig Sangster; M. Singh; Richard Adolph Snavely; M. A. Stoyer; S. C. Wilks; Kazuhito Yasuike
In recent Petawatt laser experiments at Lawrence Livermore National Laboratory, several hundred joules of 1 μm laser light in 0.5–5.0-ps pulses with intensities up to 3×1020 W cm−2 were incident on solid targets and produced a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. About 40%–50% of the laser energy is converted to broadly beamed hot electrons. Their beam centroid direction varies from shot to shot, but the resulting bremsstrahlung beam has a consistent width. Extraordinarily luminous ion beams (primarily protons) almost precisely normal to the rear of various targets are seen—up to 3×1013 protons with kTion∼several MeV representing ∼6% of the laser energy. Ion energies up to at least 55 MeV are observed. The ions appear to originate from the rear target surfaces. The edge of the ion beam is very shar...
Physics of Plasmas | 2006
H.-S. Park; D. M. Chambers; H.-K. Chung; R. J. Clarke; R. Eagleton; E. Giraldez; T. Goldsack; R. Heathcote; N. Izumi; M.H. Key; J. A. King; J. A. Koch; O. L. Landen; A. Nikroo; P. K. Patel; D. Price; B. A. Remington; H. F. Robey; Richard Adolph Snavely; D Steinman; R.B. Stephens; C. Stoeckl; M. Storm; Max Tabak; W. Theobald; R. P. J. Town; J. E. Wickersham; B. Zhang
The characteristics of 22–40keV Kα x-ray sources are measured. These high-energy sources are produced by 100TW and petawatt high-intensity lasers and will be used to develop and implement workable radiography solutions to probe high-Z and dense materials for the high-energy density experiments. The measurements show that the Kα source size from a simple foil target is larger than 60μm, too large for most radiography applications. The total Kα yield is independent of target thicknesses, verifying that refluxing plays a major role in photon generation. Smaller radiating volumes emit brighter Kα radiation. One-dimensional radiography experiments using small-edge-on foils resolved 10μm features with high contrast. Experiments were performed to test a variety of small volume two-dimensional point sources such as cones, wires, and embedded wires, measured photon yields, and compared the measurements with predictions from hybrid-particle-in-cell simulations. In addition to high-energy, high-resolution backlighte...
Physics of Plasmas | 2005
Max Tabak; Daniel Clark; S. P. Hatchett; M.H. Key; Barbara F. Lasinski; Richard Adolph Snavely; S. C. Wilks; R. P. J. Town; R. Stephens; E. M. Campbell; R. Kodama; Kunioki Mima; K. A. Tanaka; S. Atzeni; R. R. Freeman
Marshall Rosenbluth’s extensive contributions included seminal analysis of the physics of the laser-plasma interaction and review and advocacy of the inertial fusion program. Over the last decade he avidly followed the efforts of many scientists around the world who have studied Fast Ignition, an alternate form of inertial fusion. In this scheme, the fuel is first compressed by a conventional inertial confinement fusion driver and then ignited by a short (∼10ps) pulse, high-power laser. Due to technological advances, such short-pulse lasers can focus power equivalent to that produced by the hydrodynamic stagnation of conventional inertial fusion capsules. This review will discuss the ignition requirements and gain curves starting from simple models and then describe how these are modified, as more detailed physics understanding is included. The critical design issues revolve around two questions: How can the compressed fuel be efficiently assembled? And how can power from the driver be delivered efficient...
Laser and Particle Beams | 1999
Thomas E. Cowan; M. D. Perry; Michael H. Key; T. Ditmire; S. P. Hatchett; E. A. Henry; J.D. Moody; Michael J. Moran; Deanna M. Pennington; Thomas W. Phillips; Thomas C. Sangster; J.A. Sefcik; M. Singh; Richard Adolph Snavely; M. A. Stoyer; S. C. Wilks; P.E. Young; Y. Takahashi; B. Dong; W. Fountain; T. Parnell; James T. Johnson; A. W. Hunt; T. Kühl
The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. In addition to -few MeV ponderomotive electrons produced in ultra-intense laser-solid interactions, we have found a high energy component of electrons extending to -100 MeV apparently from relativistic self-focusing and plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed.
Review of Scientific Instruments | 2001
Kazuhito Yasuike; M.H. Key; S. P. Hatchett; Richard Adolph Snavely; Kenneth Bradford Wharton
Characterization of hot electron production from an ultraintense laser–solid target plasma interaction by using a buried molybdenum K-shell fluor layer technique has been reported. Laser energy was typically 400 J and its intensity was from 2×1018 up to 3×1020 W cm−2 at 20 TW to 1 PW laser power by changing pulse duration from 20 ps down to 0.5 ps. X-ray background noise level was significantly greater, i.e., gamma flash, in the shorter pulse experiments. Data analysis procedures for the experiments were developed. The conversion efficiency from the laser energy into the energy, carried by hot electrons, has been estimated to be ∼50% at 3×1020 W cm−2 laser intensity, higher than ∼18% at 1019 W cm−2 and ∼12% at 2×1018 W cm−2 intensity.
Physics of Plasmas | 2006
W. Theobald; K. U. Akli; R. J. Clarke; J. A. Delettrez; R. R. Freeman; S. H. Glenzer; J. S. Green; G. Gregori; R. Heathcote; N. Izumi; J. King; J. A. Koch; Jaroslav Kuba; K. L. Lancaster; A. J. Mackinnon; M.H. Key; C. Mileham; J. F. Myatt; D. Neely; P.A. Norreys; H.-S. Park; J. Pasley; P. K. Patel; S. P. Regan; H. Sawada; R. Shepherd; Richard Adolph Snavely; R. Stephens; C. Stoeckl; M. Storm
A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.
Review of Scientific Instruments | 1999
M. D. Perry; J.A. Sefcik; Thomas E. Cowan; S. P. Hatchett; Angus L. Hunt; M. J. Moran; Deanna M. Pennington; Richard Adolph Snavely; S. C. Wilks
Intense laser (>1021 W/cm2) driven hard x-ray sources offer a new alternative to conventional electron accelerator bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and cost advantage for multiple axis views and have the potential for much higher spatial and temporal resolution than is achievable with accelerator sources. We have begun a series of experiments using the Petawatt laser system at LLNL to determine the potential of these sources for radiography applications. Absolutely calibrated spectra extending to 20 MeV and high resolution radiographs through a ρr⩾150 g/cm2 have been obtained. The physics of these sources and the scaling relationships and laser technology required to provide the dose levels necessary for radiography applications will be discussed. Diagnostics of the laser produced electrons and photons will be addressed.
Physics of Plasmas | 2007
K. U. Akli; M.H. Key; H.-K. Chung; Stephanie B. Hansen; R. R. Freeman; M. H. Chen; G. Gregori; S. P. Hatchett; D. Hey; N. Izumi; J. King; Jaroslav Kuba; P. A. Norreys; A. J. Mackinnon; C. D. Murphy; Richard Adolph Snavely; R.B. Stephens; C. Stoeckel; W. Theobald; B. Zhang
The interaction of a 75J 10ps, high intensity laser beam with low-mass, solid Cu targets is investigated. Two instruments were fielded as diagnostics of Cu K-shell emission from the targets: a single photon counting spectrometer provided the absolute Kα yield [C. Stoeckl et al., Rev. Sci. Instrum. 75, 3705 (2004)] and a spherically bent Bragg crystal recorded 2D monochromatic images with a spatial resolution of 10μm [J. A. Koch et al., Rev. Sci. Instrum. 74, 2130 (2003)]. Due to the shifting and broadening of the Kα spectral lines with increasing temperature, there is a temperature dependence of the crystal collection efficiency. This affects measurements of the spatial pattern of electron transport, and it provides a temperature diagnostic when cross calibrated against the single photon counting spectrometer. The experimental data showing changing collection efficiency are presented. The results are discussed in light of modeling of the temperature-dependent spectrum of Cu K-shell emission.
Physics of Plasmas | 2007
Richard Adolph Snavely; B. Zhang; K. Akli; Z. L. Chen; R. R. Freeman; P. Gu; S. P. Hatchett; D. Hey; Jeremy Hill; M.H. Key; Y. Izawa; J.A. King; Y. Kitagawa; R. Kodama; A. B. Langdon; Barbara F. Lasinski; Anle Lei; A. J. Mackinnon; P. K. Patel; R. Stephens; M. Tampo; K. A. Tanaka; R. P. J. Town; Y. Toyama; T. Tsutsumi; S. C. Wilks; T. Yabuuchi; Jian Zheng
The results of laser-driven proton beam focusing and heating with a high energy (170J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1μm light at intensities of ∼3×1018W∕cm2 and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100μm thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94× the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81eV in 15μm thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.