Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard B. Alley is active.

Publication


Featured researches published by Richard B. Alley.


Geology | 1997

Holocene climatic instability: A prominent, widespread event 8200 yr ago

Richard B. Alley; Paul Andrew Mayewski; Todd Sowers; Minze Stuiver; Kendrick C. Taylor; Peter U. Clark

The most prominent Holocene climatic event in Greenland ice-core proxies, with approximately half the amplitude of the Younger Dryas, occurred ∼8000 to 8400 yr ago. This Holocene event affected regions well beyond the North Atlantic basin, as shown by synchronous increases in windblown chemical indicators together with a significant decrease in methane. Widespread proxy records from the tropics to the north polar regions show a short-lived cool, dry, or windy event of similar age. The spatial pattern of terrestrial and marine changes is similar to that of the Younger Dryas event, suggesting a role for North Atlantic thermohaline circulation. Possible forcings identified thus far for this Holocene event are small, consistent with recent model results indicating high sensitivity and strong linkages in the climatic system.


Quaternary Science Reviews | 2000

The Younger Dryas cold interval as viewed from central Greenland

Richard B. Alley

Abstract Greenland ice-core records provide an exceptionally clear picture of many aspects of abrupt climate changes, and particularly of those associated with the Younger Dryas event, as reviewed here. Well-preserved annual layers can be counted confidently, with only ≈1% errors for the age of the end of the Younger Dryas ≈11,500 years before present. Ice-flow corrections allow reconstruction of snow accumulation rates over tens of thousands of years with little additional uncertainty. Glaciochemical and particulate data record atmospheric-loading changes with little uncertainty introduced by changes in snow accumulation. Confident paleothermometry is provided by site-specific calibrations using ice-isotopic ratios, borehole temperatures, and gas-isotopic ratios. Near-simultaneous changes in ice-core paleoclimatic indicators of local, regional, and more-widespread climate conditions demonstrate that much of the Earth experienced abrupt climate changes synchronous with Greenland within thirty years or less. Post-Younger Dryas changes have not duplicated the size, extent and rapidity of these paleoclimatic changes.


Nature | 1998

Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice

Jeffrey P. Severinghaus; Todd Sowers; Edward J. Brook; Richard B. Alley; Michael L. Bender

Rapid temperature change fractionates gas isotopes in unconsolidated snow, producing a signal that is preserved in trapped air bubbles as the snow forms ice. The fractionation of nitrogen and argon isotopes at the end of the Younger Dryas cold interval, recorded in Greenland ice, demonstrates that warming at this time was abrupt. This warming coincides with the onset of a prominent rise in atmospheric methane concentration, indicating that the climate change was synchronous (within a few decades) over a region of at least hemispheric extent, and providing constraints on previously proposed mechanisms of climate change at this time. The depth of the nitrogen-isotope signal relative to the depth of the climate change recorded in the ice matrix indicates that, during the Younger Dryas, the summit of Greenland was 15 ± 3 °C colder than today.


Journal of Geophysical Research | 1997

Validity of the temperature reconstruction from water isotopes in ice cores

Jean Jouzel; Richard B. Alley; Kurt M. Cuffey; W. Dansgaard; Pieter Meiert Grootes; George R. Hoffmann; Sigfus J Johnsen; Randal D. Koster; David A. Peel; Christopher A. Shuman; M. Stievenard; Minze Stuiver; James W. C. White

Well-documented present-day distributions of stable water isotopes (HDO and H218O) show the existence, in middle and high latitudes, of a linear relationship between the mean annual isotope content of precipitation (δD and δ18O) and the mean annual temperature at the precipitation site. Paleoclimatologists have used this relationship, which is particularly well obeyed over Greenland and Antarctica, to infer paleotemperatures from ice core data. There is, however, growing evidence that spatial and temporal isotope/surface temperature slopes differ, thus complicating the use of stable water isotopes as paleothermometers. In this paper we review empirical estimates of temporal slopes in polar regions and relevant information that can be inferred from isotope models: simple, Rayleigh-type distillation models and (particularly over Greenland) general circulation models (GCMs) fitted with isotope tracer diagnostics. Empirical estimates of temporal slopes appear consistently lower than present-day spatial slopes and are dependent on the timescale considered. This difference is most probably due to changes in the evaporative origins of moisture, changes in the seasonality of the precipitation, changes in the strength of the inversion layer, or some combination of these changes. Isotope models have not yet been used to evaluate the relative influences of these different factors. The apparent disagreement in the temporal and spatial slopes clearly makes calibrating the isotope paleothermometer difficult. Nevertheless, the use of a (calibrated) isotope paleothermometer appears justified; empirical estimates and most (though not all) GCM results support the practice of interpreting ice core isotope records in terms of local temperature changes.


Journal of Geophysical Research | 1997

The Greenland Ice Sheet Project 2 Depth-age Scale: Methods and Results

D. A. Meese; Anthony J. Gow; Richard B. Alley; Gregory A. Zielinski; Pieter Meiert Grootes; Michael Ram; Kendrick C. Taylor; Paul Andrew Mayewski; John F. Bolzan

The Greenland Ice Sheet Project 2 (GISP2) depth-age scale is presented based on a multiparameter continuous count approach, to a depth of 2800 m, using a systematic combination of parameters that have never been used to this extent before. The ice at 2800 m is dated at 110,000 years B.P. with an estimated error ranging from 1 to 10% in the top 2500 m of the core and averaging 20% between 2500 and 2800 m. Parameters used to date the core include visual stratigraphy, oxygen isotopic ratios of the ice, electrical conductivity measurements, laser-light scattering from dust, volcanic signals, and major ion chemistry. GISP2 ages for major climatic events agree with independent ages based on varve chronologies, calibrated radiocarbon dates, and other techniques within the combined uncertainties. Good agreement also is obtained with Greenland Ice Core Project ice core dates and with the SPECMAP marine timescale after correlation through the δ 18 O of O 2 . Although the core is deformed below 2800 m and the continuity of the record is unclear, we attempted to date this section of the core on the basis of the laser-light scattering of dust in the ice.


Science | 1995

Large arctic temperature change at the Wisconsin-Holocene glacial transition

Kurt M. Cuffey; Gary D. Clow; Richard B. Alley; Minze Stuiver; Edwin D. Waddington; Richard W. Saltus

Analysis of borehole temperature and Greenland Ice Sheet Project II ice-core isotopic composition reveals that the warming from average glacial conditions to the Holocene in central Greenland was large, approximately 15°C. This is at least three times the coincident temperature change in the tropics and mid-latitudes. The coldest periods of the last glacial were probably 21°C colder than at present over the Greenland ice sheet.


Science | 2006

Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise

Jonathan T. Overpeck; Bette L. Otto-Bliesner; Gifford H. Miller; Daniel R. Muhs; Richard B. Alley; Jeffrey T. Kiehl

Sea-level rise from melting of polar ice sheets is one of the largest potential threats of future climate change. Polar warming by the year 2100 may reach levels similar to those of 130,000 to 127,000 years ago that were associated with sea levels several meters above modern levels; both the Greenland Ice Sheet and portions of the Antarctic Ice Sheet may be vulnerable. The record of past ice-sheet melting indicates that the rate of future melting and related sea-level rise could be faster than widely thought.


Science | 1994

Record of Volcanism Since 7000 B.C. from the GISP2 Greenland Ice Core and Implications for the Volcano-Climate System.

Gregory A. Zielinski; Paul Andrew Mayewski; L. D. Meeker; Sallie I. Whitlow; Mark S. Twickler; M. C. Morrison; D. A. Meese; Anthony J. Gow; Richard B. Alley

Sulfate concentrations from continuous biyearly sampling of the GISP2 Greenland ice core provide a record of potential climate-forcing volcanism since 7000 B.C. Although 85 percent of the events recorded over the last 2000 years were matched to documented volcanic eruptions, only about 30 percent of the events from 1 to 7000 B.C. were matched to such events. Several historic eruptions may have been greater sulfur producers than previously thought. There are three times as many events from 5000 to 7000 B.C. as over the last two millennia with sulfate deposition equal to or up to five times that of the largest known historical eruptions. This increased volcanism in the early Holocene may have contributed to climatic cooling.


Science | 1994

Changes in Atmospheric Circulation and Ocean Ice Cover over the North Atlantic During the Last 41,000 Years

Paul Andrew Mayewski; L. D. Meeker; Sallie I. Whitlow; Mark S. Twickler; M. C. Morrison; P. Bloomfield; Gerard C. Bond; Richard B. Alley; Anthony J. Gow; D. A. Meese; Pieter Meiert Grootes; Michael Ram; Kendrick C. Taylor; W. Wumkes

High-resolution, continuous multivariate chemical records from a central Greenland ice core provide a sensitive measure of climate change and chemical composition of the atmosphere over the last 41,000 years. These chemical series reveal a record of change in the relative size and intensity of the circulation system that transported air masses to Greenland [defined here as the polar circulation index (PCI)] and in the extent of ocean ice cover. Massive iceberg discharge events previously defined from the marine record are correlated with notable expansions of ocean ice cover and increases in PCI. During stadials without discharge events, ocean ice cover appears to reach some common maximum level. The massive aerosol loadings and dramatic variations in ocean ice cover documented in ice cores should be included in climate modeling.


Nature | 1998

Deglacial changes in ocean circulation from an extended radiocarbon calibration

Konrad A. Hughen; Jonathan T. Overpeck; Scott J. Lehman; Michaele Kashgarian; John Southon; Larry C. Peterson; Richard B. Alley; Daniel M. Sigman

Temporal variations in the atmospheric concentration of radiocarbon sometimes result in radiocarbon-based age-estimates of biogenic material that do not agree with true calendar age. This problem is particularly severe beyond the limit of the high-resolution radiocarbon calibration based on tree-ring data, which stretches back only to, about 11.8 kyr before present (BP), near the termination of the Younger Dryas cold period. If a wide range of palaeoclimate records are to be exploited for better understanding the rates and patterns of environmental change during the last deglaciation, extending the well-calibrated radiocarbon timescale back further in time is crucial. Several studies attempting such an extension, using uranium/thorium-dated corals and laminae counts in varved sediments, show conflicting results. Here we use radiocarbon data from varved sediments in the Cariaco basin, in the southern Caribbean Sea, to construct an accurate and continuous radiocarbon calibration for the period 9 to 14.5 kyr BP, nearly 3,000 years beyond the tree-ring-based calibration. A simple model compared to the calculated atmospheric radiocarbon concentration and palaeoclimate data from the same sediment core suggests that North Atlantic Deep Water formation shut down during the Younger Dryas period, but was gradually replaced by an alternative mode of convection, possibly via the formation of North Atlantic Intermediate Water.

Collaboration


Dive into the Richard B. Alley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron R. Parizek

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Huw J. Horgan

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Lawson

Cold Regions Research and Engineering Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. E. Peters

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Donald D. Blankenship

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge