Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard B. Thomas is active.

Publication


Featured researches published by Richard B. Thomas.


Oecologia | 1995

Effects of low and elevated CO2 on C3 and C4 annuals

David T. Tissue; Kevin L. Griffin; Richard B. Thomas; B. R. Strain

In order study C3 and C4 plant growth in atmospheric CO2 levels ranging from past through predicted future levels, Abutilon theophrasti (C3) and Amaranthus retroflexus (C4) were grown from seed in growth chambers controlled at CO2 partial pressures of 15 Pa (below Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current) and 70 Pa (predicted future). After 35 days of growth, CO2 had no effect on the relative growth rate, total biomass or partitioning of biomass in the C4 species. However, the C3 species had greater biomass accumulation with increasing CO2 partial pressure. C3 plants grown in 15 Pa CO2 for 35 days had only 8% of the total biomass of plants grown in 35 Pa CO2, C3 plants had lower relative growth rates and lower specific leaf mass than plants grown in higher CO2 partial pressures, and aborted reproduction. C3 plants grown in 70 Pa CO2 had greater root mass and root-to-shoot ratios than plants grown in lower CO2 partial pressures. These findings, support other studies that show C3 plant growth is more responsive to CO2 partial pressure than C4 plant growth. Differences in growth responses to CO2 levels of the Pleistocene through the future suggest that competitive interactions of C3 and C4 annuals have changed through geologic time. This study also provided evidence that C3 annuals may be operating near a minimum CO2 partial pressure for growth and reproduction at 15 Pa CO2.


Oecologia | 1994

Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance

Ray S. Williams; David E. Lincoln; Richard B. Thomas

Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO2 regimes: ambient, 150 μl l−1 CO2 above ambient, and 300 μl l−1 CO2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar larvae of loblolly pines principal leaf herbivore, red-headed pine sawfly, Neodiprion lecontei (Fitch). The relative consumption rate of larvae significantly increased on plants grown under elevated CO2, and needles grown in the highest CO2 regime were consumed 21% more rapidly than needles grown in ambient CO2. Both the significant decline in leaf nitrogen content and the substantial increase in leaf starch content contributed to a significant increase in the starch:nitrogen ratio in plants grown in elevated CO2. Insect consumption rate was negatively related to leaf nitrogen content and positively related to the starch:nitrogen ratio. Of the four volatile leaf monoterpenes measured, only β-pinene exhibited a significant CO2 effect and declined in plants grown in elevated CO2. Although consumption changed, the relative growth rates of larvae were not different among CO2 treatments. Despite lower nitrogen consumption rates by larvae feeding on the plants grown in elevated CO2, nitrogen accumulation rates were the same for all treatments due to a significant increase in nitrogen utilization efficiency. The ability of this insect to respond at an early, potentially susceptible larval stage to poorer food quality and declining levels of a leaf monoterpene suggest that changes in needle quality within pines in future elevated-CO2 atmospheres may not especially affect young insects and that tree-feeding sawflies may respond in a manner similar to herb-feeding lepidopterans.


Oecologia | 1993

Effects of nitrogen supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda (L.) seedlings

Kevin L. Griffin; Richard B. Thomas; Boyd R. Strain

Seedlings of loblolly pine (Pinus taeda L.) were grown under varying conditions of soil nitrogen and atmospheric carbon dioxide availability to investigate the interactive effects of these resources on the energetic requirements for leaf growth. Increasing the ambient CO2 partial pressure from 35 to 65 Pa increased seedling growth only when soil nitrogen was high. Biomass increased by 55% and photosynthesis increased by 13% after 100 days of CO2 enrichment. Leaves from seedlings grown in high soil nitrogen were 7.0% more expensive on a g glucose g−1 dry mass basis to produce than those grown in low nitrogen, while elevated CO2 decreased leaf cost by 3.5%. Nitrogen and CO2 availability had an interactive effect on leaf construction cost expressed on an area basis, reflecting source-sink interactions. When both resources were abundant, leaf construction cost on an area basis was relatively high (81.8±3.0 g glucose m−2) compared to leaves from high nitrogen, low CO2 seedlings (56.3±3.0 g glucose m−2) and low nitrogen, low CO2 seedlings (67.1±2.7 g glucose m−2). Leaf construction cost appears to respond to alterations in the utilization of photoassimilates mediated by resource availability.


Plant Physiology | 1994

Direct and Indirect Effects of Atmospheric Carbon Dioxide Enrichment on Leaf Respiration of Glycine max (L.) Merr

Richard B. Thomas; Kevin L. Griffin

Long-term and short-term effects of CO2 enrichment on dark respiration were investigated using soybean (Glycine max [L.] Merr.) plants grown at either 35.5 or 71.0 Pa CO2. Indirect effects, or effects of growth in elevated CO2, were examined using a functional model that partitioned respiration into growth and maintenance components. Direct effects, or immediate effects of a short-term change in CO2, were examined by measuring dark respiration, first, at the CO2 partial pressure at which plants were grown, and second, after equilibration in the reciprocal CO2 partial pressure. The functional component model indicated that the maintenance coefficient of respiration increased 34% with elevated CO2, whereas the growth coefficient was not significantly affected. Changes in maintenance respiration were correlated with a 33% increase in leaf total nonstructural carbohydrate concentration, but leaf nitrogen content of soybean leaves was not affected by CO2 enrichment. Thus, increased maintenance respiration may be a consequence of increased nonstructural carbohydrate accumulation. When whole soybean plants were switched from low CO2 to high CO2 for a brief period, leaf respiration was always reduced. However, this direct effect of CO2 partial pressure was approximately 50% less in plants grown in elevated CO2. We conclude from this study that there are potentially important effects of CO2 enrichment on plant respiration but that the effects are different for plants given a short-term increase in CO2 partial pressure versus plants grown in elevated CO2.


Plant and Soil | 1994

Effect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings

James D. Lewis; Richard B. Thomas; Boyd R. Strain

Interactive effects of elevated atmospheric CO2 and phosphorus supply on mycorrhizal colonization rates were investigated using loblolly pine (Pinus taeda L.) seedlings from Florida and coastal North Carolina. Seedlings from both populations were grown in greenhouses maintained at either 35.5 Pa or 71.0 Pa CO2. In both CO2 treatments, seedlings were grown in a full factorial experiment with or without mycorrhizal inoculum and with an adequate or a limiting supply of phosphorus. Seedlings were harvested 60, 90 and 120 days after emergence and at each harvest root subsamples were examined to determine the percent of fine roots that were mycorrhizal. Additionally, root carbohydrate and nutrient levels were measured at each harvest. Root starch, sugar and total non-structural carbohydrate (TNC) concentrations were increased by growth in elevated CO2 and decreased by mycorrhizal colonization. Phosphorus stress decreased root starch concentrations, increased root sugar concentrations and did not significantly affect TNC concentrations. However, despite significant effects on root carbohydrate levels, there were generally no significant treatment effects on mycorrhizal colonization. Additionally, at all harvests, root starch and sugar concentrations were not correlated with percent of fine roots that were mycorrhizal. These results suggest that although elevated CO2 may significantly increase root carbohydrate levels, the increases may not affect the percent of fine roots that are mycorrhizal.


Oecologia | 1991

Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium (Jacq.) Walp.) exposed to elevated atmospheric carbon dioxide

Richard B. Thomas; Daniel D. Richter; H. Ye; P. R. Heine; Boyd R. Strain

SummarySeeds of Gliricidia sepium (Jacq.) Walp., a tree native to seasonal tropical forests of Central America, were inoculated with N-fixing Rhizobium bacteria and grown in growth chambers for 71 days to investigate interactive effects of atmospheric CO2 and plant N status on early seedling growth, nodulation, and N accretion. Seedlings were grown with CO2 partial pressures of 350 and 650 μbar (current ambient and a predicted partial pressure of the mid-21st century) and with plus N or minus N nutrient solutions to control soil N status. Of particular interest was seedling response to CO2 when grown without available soil N, a condition in which seedlings initially experienced severe N deficiency because bacterial N-fixation was the sole source of N. Biomass of leaves, stems, and roots increased significantly with CO2 enrichment (by 32%, 15% and 26%, respectively) provided seedlings were supplied with N fertilizer. Leaf biomass of N-deficient seedlings was increased 50% by CO2 enrichment but there was little indication that photosynthate translocation from leaves to roots or that plant N (fixed by Rhizobium) was altered by elevated CO2. In seedlings supplied with soil N, elevated CO2 increased average nodule weight, total nodule weight per plant, and the amount of leaf nitrogen provided by N-fixation (as indicated by leaf δ15N). While CO2 enrichment reduced the N concentration of some plant tissues, whole plant N accretion increased. Results support the contention that increasing atmospheric CO2 partial pressures will enhance productivity and N-fixing activity of N-fixing tree seedlings, but that the magnitude of early seedling response to CO2 will depend greatly on plant and soil nutrient status.


Plant Ecology | 1997

Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide

Christoph S. Vogel; Peter S. Curtis; Richard B. Thomas

Short-term studies of tree growth at elevated CO2 suggest that forest productivity may increase as atmospheric CO2 concentrations rise, although low soil N availability may limit the magnitude of this response. There have been few studies of growth and N2 fixation by symbiotic N2-fixing woody species under elevated CO2 and the N inputs these plants could provide to forest ecosystems in the future. We investigated the effect of twice ambient CO2 on growth, tissue N accretion, and N2 fixation of nodulated Alnus glutinosa (L.) Gaertn. grown under low soil N conditions for 160 d. Root, nodule, stem, and leaf dry weight (DW) and N accretion increased significantly in response to elevated CO2. Whole-plant biomass and N accretion increased 54% and 40%, respectively. Delta-15N analysis of leaf tissue indicated that plants from both treatments derived similar proportions of their total N from symbiotic fixation suggesting that elevated CO2 grown plants fixed approximately 40% more N than did ambient CO2 grown plants. Leaves from both CO2 treatments showed similar relative declines in leaf N content prior to autumnal leaf abscission, but total N in leaf litter increased 24% in elevated compared to ambient CO2 grown plants. These results suggest that with rising atmospheric CO2 N2-fixing woody species will accumulate greater amounts of biomass N through N2 fixation and may enhance soil N levels by increased litter N inputs.


Water Air and Soil Pollution | 1992

Field measurements of CO2 enhancement and climate change in natural vegetation

Boyd R. Strain; Richard B. Thomas

It is generally assumed that healthy, natural ecosystems have the potential to sequester carbon under favorable environmental conditions. There is also evidence that CO2 acts as a plant fertilizer. It is of interest to know if these assumptions are valid and how natural systems might respond under future scenarios of CO2 increase and possible climate changes. Few measurements of the effects of CO2 and global climate change have been made on “natural” ecosystems under realistic field conditions. Most measurements have been conducted in the synthetic environments of totally controlled greenhouses and growth chambers. Several lines of evidence indicate that controlled environment studies using plants growing in pots induce experimental artifacts that reduce confidence in the use of results for prediction of future global responses. Open top chambers are being used in several autecological field studies in an attempt to obtain more realistic field environments. A few field microcosm studies have been completed and a system for the free air release of CO2 has been applied in cotton fields. Unfortunately, the requirement of large amounts of CO2 and financial restrictions have precluded the initiation of larger scale field studies in natural vegetation. This paper lists and summarizes the best field studies available but draws heavily on studies from artificial environments and conditions in an attempt to summarize knowledge of global environmental change on forests and other non-agricultural ecosystems. Finally the paper concludes that there is a need for the development and application of equipment for field measurements in several representative natural ecosystems and makes specific recommendation of the creation of a tropical research center.


Plant and Soil | 1997

Interactive effects of soil nitrogen and atmospheric carbon dioxide on root/rhizosphere carbon dioxide efflux from loblolly and ponderosa pine seedlings

Kevin L. Griffin; Michael A. Bashkin; Richard B. Thomas; Boyd R. Strain

We measured CO2 efflux from intact root/rhizosphere systems of 155 day old loblolly (Pinus taeda L.) and ponderosa (Pinus ponderosa Dougl. ex Laws.) pine seedlings in order to study the effects of elevated atmospheric CO2 on the below-ground carbon balance of coniferous tree seedlings. Seedlings were grown in sterilized sand culture, watered daily with either 1, 3.5 or 7 mt M NH4+, and maintained in an atmosphere of either 35 or 70 Pa CO2. Carbon dioxide efflux (μmol CO2 plant−1 s−1) from the root/rhizosphere system of both species significantly increased when seedlings were grown in elevated CO2, primarily due to large increases in root mass. Specific CO2 efflux (μmol CO2 g root−1 s−1) responded to CO2 only under conditions of adequate soil nitrogen availability (3.5 mt M). Under these conditions, CO2 efflux rates from loblolly pine increased 70% from 0.0089 to 0.0151 μmol g−1 s−1 with elevated CO2 while ponderosa pine responded with a 59% decrease, from 0.0187 to 0.0077 μmol g−1 s−1. Although below ground CO2 efflux from seedlings grown in either sub-optimal (1 mt M) or supra-optimal (7 mt M) nitrogen availability did not respond to CO2, there was a significant nitrogen treatment effect. Seedlings grown in supra-optimal soil nitrogen had significantly increased specific CO2 efflux rates, and significantly lower total biomass compared to either of the other two nitrogen treatments. These results indicate that carbon losses from the root/rhizosphere systems are responsive to environmental resource availability, that the magnitude and direction of these responses are species dependent, and may lead to significantly different effects on whole plant carbon balance of these two forest tree species.


Tree Physiology | 1996

Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO2 for 19 months in the field

David T. Tissue; Richard B. Thomas; B. R. Strain

Collaboration


Dive into the Richard B. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Lewis

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David E. Lincoln

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Ray S. Williams

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge